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Preface

This book presents lectures given during a school and workshop orga-
nized at Heriot-Watt University in July and August 2006, with funding
from the London Mathematical Society (LMS), which supported the In-
vited Lectures of Michael Singer, and the International Centre for Math-
ematical Sciences (ICMS) in Edinburgh, which supported the Workshop.

The origin of these events lies in a suggestion made by one of us
(AVM) to the other that we should make a proposal for an Isaac Newton
Institute programme. After some thought we concluded that a smaller
scale proposal would be more appropriate to the present state of the
field and the wishes of likely participants, as well as our capacity to
write proposals.

We therefore, with his agreement, proposed Michael Singer as the
speaker for the 2006 LMS Invited Lecture series, and simultaneously
make a proposal to ICMS for a workshop to follow the Invited Lectures:
happily both proposals were accepted. We were very glad that in making
the workshop proposal we had the assistance of Michael himself and of
Sergei Tsarev, who were very helpful in suggesting topics for inclusion
and people to invite, whether or not they became speakers.

Between the initial proposal and carrying it out we were fortunate
to recruit Chris Eilbeck of Heriot-Watt as an additional organizer. His
local knowledge and connections with ICMS were invaluable in actu-
ally mounting the event, and it is hard to express our thanks forcefully
enough!

Michael Singer is an excellent lecturer of great clarity: from personal
experience we also knew that he is generous with his time and ideas,
especially to new workers in the field. He has made outstanding contri-
butions in Differential Algebra and Differential (and Difference) Galois
Theory, and naturally it was that which we asked him to lecture on. We

vi



Preface vii

also had in mind from the start that we should complement Michael’s
lectures with some shorter series of lectures on other topics in the general
field, which, together with Michael’s longer series, would enable people
new to the field to profit from the workshop. In a way, we were lucky
that because he had recently published books in the field, Michael did
not wish to write up the lectures at book length, as many LMS Invited
Lecturers have, and we are therefore able to present the work of other
lecturers as well.

We aimed, in both the school and the workshop, to cover the full
range of algebraic approaches to differential equations: differential alge-
bra, D-modules, model-theoretical aspects of the theory of differential
equations, the Inverse Transform method for nonlinear partial differ-
ential equations, and the algebraic theory of factorization of differen-
tial equations and systems of differential equations. The only major
approach which may have been under-represented was Lie symmetry
methods and their generalizations, on which there are already excellent
texts. We were also particularly keen to encourage and facilitate in-
teractions between the various approaches, which had not really been
brought together before.

As it turned out we were able to mount a good many of the subsidiary
shorter lecture series we hoped for, with speakers distinguished for both
content and presentation. As in the school itself, the major contribution
in this book is Singer’s and is an expanded written version of his lectures,
but we also have written versions of most of the others. Anand Pillay
(and others working in model theory and related areas) had written a
number of other expository and research papers about the same time,
and so did not wish to make a full writeup, but Anand nevertheless
kindly agreed to write a short account referring to those other articles,
while the general area covered by Vladimir Sokolov’s lectures is discussed
in the contribution of Mikhailov, Wang and Novikov.

In general we felt that the workshop talks, although covering a lot
of very interesting and novel work, were too specialized for a lecture
notes volume, but we invited some of those whose talks had more of a
overview character, or had included a section of that kind, to contribute.
Felix Ulmer and Jacques-Arthur Weil provided a combined contribution,
Wang and Novikov joined theirs with Mikhailov’s, and Hietarinta also
kindly agreed to contribute.

We heartily thank our co-organizers, without whom the event would
have been poorer both intellectually and practically, our sponsors, LMS
and ICMS, the lecturers whose work is presented here, and the many
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other contributors to the workshop. We also gratefully acknowledge
additional support from the Edinburgh Mathematical Society and the
Royal Society of Edinburgh.

Finally, we would like to thank the ICMS very much for its organi-
zational help, as well as the funding, in particular its Director, John
Toland, and the administrative staff, Tracey Dart, Morag Burton and
Audrey Brown, who made all the practical arrangements including cop-
ing with the knock-on effects of the sudden change in airline baggage
regulations that happened at the end of the second week, and to thank
the Conference staff of Heriot-Watt for enabling such a pleasant and
stimulating two weeks. In recognition of the work of ICMS, any royal-
ties from this book will be given to them to add to student support at
future events.

Malcolm MacCallum
Alexander Mikhailov
January 2008
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Introduction to the Galois Theory of Linear
Differential Equations
Michael F. Singer

Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205
singer@math.ncsu. edu

1.1 Introduction

This paper is an expanded version of the 10 lectures I gave as the 2006
London Mathematical Society Invited Lecture Series at the Heriot-Watt
University, 31 July - 4 August 2006f. My goal was to give the audience
an introduction to the algebraic, analytic and algorithmic aspects of the
Galois theory of linear differential equations by focusing on some of the
main ideas and philosophies and on examples. There are several texts
(1, 2, 3, 4, 5] to name a few) that give detailed expositions and I hope
that the taste offered here will encourage the reader to dine more fully
with one of these.

The rest of the paper is organized as follows. In Section 1.2, What is a
Linear Differential Equation?, I discuss three ways to think about linear
differential equations: scalar equations, linear systems and differential
modules. Just as it is useful to think of linear maps in terms of linear
equations, matrices and associated modules, it will be helpful in future
sections to go back and forth between the different ways of presenting
linear differential equations.

In Section 1.3, Basic Galois Theory and Applications, 1 will give the
basic definitions and describe the Galois correspondence. In addition
I will describe the notion of monodromy and its relation to the Galois

t I would like to thank the London Mathematical Society for inviting me to present
these lectures, the Heriot-Watt University for hosting them and the International
Centre for the Mathematical Sciences for sponsoring a mini-programme on the
Algebraic Theory of Differential Equations to complement these talks. Thanks also
go to the Edinburgh Mathematical Society and the Royal Society of Edinburgh,
who provided support for some of the participants and to Chris Eilbeck, Malcolm
MacCallum, and Alexandre Mikhailov for organizing these events. This material
is based upon work supported by the National Science Foundation under Grant
No. 0096842 and 0634123



2 Michael F. Singer

theory. I will end by giving several applications and ramifications, one
of which will be to answer the question Although y = cosx satisfies
y" +y =0, why doesn’t secx satisfy a linear differential equation?

In Section 1.4, Local Galois Theory, I will discuss the formal solution
of a linear differential equation at a singular point and describe the
asymptotics which allow one to associate with it an analytic solution
in a small enough sector at that point. This will involve a discussion
of Gevrey asymptotics, the Stokes phenomenon and its relation to the
Galois theory. A motivating question (which we will answer in this
section) is In what sense does the function

f(:v)=/0 Lo fac

represent the divergent series

> (-1)"nle"t 2

n>0

In Section 1.5, Algorithms, I turn to a discussion of algorithms that
allow us to determine properties of a linear differential equation and its
Galois group. I will show how category theory, and in particular the
tannakian formalism, points us in a direction that naturally leads to
algorithms. I will also discuss algorithms to find “closed form solutions”
of linear differential equations.

In Section 1.6, Inverse Problems, I will consider the problem of which
groups can appear as Galois groups of linear differential equations. I
will show how monodromy and the ideas in Section 1.4 play a role as
well as ideas from Lie theory.

In Section 1.7, Families of Linear Differential Equations, I will look at
linear differential equations that contain parameters and ask How does
the Galois group change as we vary the parameters?. This will lead to
a discussion of a a generalization of the above theory to a Galois theory
of parameterized linear differential equations.

1.2 What is a Linear Differential Equation?

I will develop an algebraic setting for the study of linear differential
equations. Although there are many interesting questions concerning
differential equations in characteristic p [6, 7, 8, 9], we will restrict our-
selves throughout this paper, without further mention, to fields of char-
acteristic 0. I begin with some basic definitions.
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Definition 1.2.1 1) A differential ring (R, A) is a ring R with a set
A ={0,...,0m} of maps (derivations) 9; : R — R, such that

(i) 0;(a+b) = 0;(a)+0;(b), Oi(ab) = d;(a)b+ad;(b) for alla,b € R,
and
(11) 828]' = ﬁj(“)i fO?" all ’L,J
2) The ring Cr = {c € R | d(c) = 0V 0 € A} is called the ring of
constants of R.

When m = 1, we say R is an ordinary differential ring (R,9). We
frequently use the notation a’ to denote 9(a) for a € R. A differential
ring that is also a field is called a differential field. If k is a differential
field, then C} is also a field.

Examples 1.2.2 1) (C*(R™),A = {8%1, ce %}) = infinitely differ-
entiable functions on R™.
2) (C(z1,.. yzm), A = {%1—, e &@;‘ ) = field of rational functions
3) (C[[z]], &) = ring of formal power series
C((z)) = quotient field of C[[z]] = C[[z]][1]
4) (C{{z}}, Z) = ring of germs of convergent series

C({z}) = quotient field of C{{z}} = (C{{m}}[%]

5) (Mo, A = {6—‘;,...,8%1}) = field of functions meromorphic on
Oopen,connected c om

The following result of Seidenberg [10, 11] shows that many examples
reduce to Example 5) above:

Theorem 1.2.3 Any differential field k, finitely generated over Q, is
isomorphic to a differential subfield of some Mo.

We wish to consider and compare three different versions of the notion
of a linear differential equation.

Definition 1.2.4 Let (k,0) be a differential field.

(i) A scalar linear differential equation is an equation of the form

L(y) = any™ + ...+ aoy =0, a; € k.
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(ii) A matrix linear differential equation is an equation of the form
Y' =AY, A€gl, (k)

where gl,, (k) denotes the ring of n x n matrices with entries in k.
(iii) A differential module of dimension n is an n-dimensional k-
vector space M with a map 0 : M — M satisfying

A(fm) = f'm+ fom for all f € k,m € M.

We shall show that these three notions are equivalent and give some
further properties.

From scalar to matrix equations: Let L(y) = y™ +an_y D 4+
cootay=0. Ifwelet y; =y, 92 =v',...yn = y™ Y, then we have

U ' 0 1 0 cee 0 Y1
yn—l 0 O 0 PN 1 yn-—l
Yn —ap —ap —az ... —04p-1 Yn

We shall write this last equation as Y’ = A;Y and refer to Ay as the
companion matrix of the scalar equation and the matrix equation as the
companion equation. Clearly any solution of the scalar equation yields
a solution of the companion equation and vice versa.

From matrix equations to differential modules (and back):

Given Y’ = AY, A € gl (k), we construct a differential module in
the following way: Let M = k™, ey,...,e, the usual basis. Define
de; = — 3, a;ej, i.e., de = —A'e. Note that if m = 3, fie; then
Om =3 °,(f{ — >_;ai;f;)e;. In particular, we have that dm = 0 if and

only if
A\ fi
| =4
fn fn

It is this latter fact that motivates the seemingly strange definition of

this differential module, which we denote by (M4, 9).

Conversely, given a differential module (M, 9), select a basis
e = (e1,...,en). Define Ay € gl,(k) by Oe; =3, a; e;. This yields a
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matrix equation Y/ = AY. If € = (€1,...,€,) is another basis, we get
another equation Y/ = AY. If f and f are vectors with respect to these
two bases and f = Bf, B € GL,(k), then

A=B'AB-B7'B.

Definition 1.2.5 Let (M1,0:) and (Ma,02) be differential modules.

1) A differential module homomorphism ¢ : M1 — My is a k-linear map
¢ such that ¢(01(m)) = 92(¢p(m)) for all m € M.

2) The differential modules (M7, 01) and (M2, 01) are isomorphic if there
exists a bijective differential homomorphism ¢ : M, — M.

3) Two differential equations Y' = A1Y and Y' = A2Y are equivalent
if the differential modules M4, and M4, are isomorphic

Instead of equivalent, some authors use the term “gauge equivalent” or
“of the same type”.

Differential modules offer us an opportunity to study linear differen-
tial equations in a basis-free environment. Besides being of theoretical
interest, it is important in computations to know that a concept is inde-
pendent of bases, since this allows one to then select a convenient basis
in which to compute.

Before we show how one can recover a scalar equation from a differential
module, we show that the standard constructions of linear algebra can
be carried over to the context of differential modules. Let (M1, 0;) and
(M3, 32) be differential modules and assume that for certain bases these
correspond to the equations Y’ = 4;Y and Y/ = A,Y.

In Table 1.1 we list some standard linear algebra constructions and how
they generalize to differential modules. In this table, I, represents the
n; X n; identity matrix and for two matrices A = (a; ;) and B, A® B is
the matrix where the 4, j-entry of A is replaced by a; ;B. Also note that
if f € Homy(M;, M2) then 9(f) = 0 if and only if f(dm1) = 02(f(m1)),
that is, if and only if f is a differential module homomorphism.

Referring to the table, it is not hard to show that Homg(M;, M) ~ M1 ®
M3 as differential modules. Furthermore, given (M, 9) with dimg (M) =
n, corresponding to a differential equation Y/ = AY, we have that
M ~ &7 ;14if and only if there exist yi1,...,y, in k", linearly inde-
pendent over k such that y, = Ay;.
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Table 1.1.
Construction 7] Matrix Equation
(M1 ® M2, 0) (my @ me) = Y = < /-(1)1 ;1)2 >Y
ohmi @ Oame
(M1 ® M2, ) (m1 @ ma) = Y =
Omi ®@ma+mi®0me | (A1 ® In, + In, ® A2)Y
(Homy (M, M2),8) | 8(f)(m) = Y =YALY - ATY
f(61m) — Ba(f(m))
1, = (k,0) = trivial | =0 Y =0
differential module
(M*,0) = a(f)(m) = f(8(m)) V' =-ATY
Homk(M, 1k)

From matrix to scalar linear differential equations: Before I dis-
cuss the relationship between matrix and scalar linear differential equa-
tions, I need one more concept.

Definition 1.2.6 Let k be a differential field. The ring of differen-
tial operators over k = k[J)] is the ring of noncommutative polynomials
{an0™+...4a10+a0 | a; € k} with coefficients in k, where multiplication
is determined by 8 -a = a’ + ad for all a € k.

We shall refer to the degree of an element L € k[J] as its order ord L.
The following properties are not hard to check ([5], Chapter 2.1):

Lemma 1.2.7 Let Ly # 0, Ly € k[0].

1) There exist unique @, R € k[0] with ord R < ord Ly such that Ly =
QL + R.

2) Every left ideal of k[D] is of the form k[O]L for some L € k[0].

We note that any differential module M can be considered a left k[d]-
module and conversely, any left k[0]-module that is finite dimensional
as a k-vector space is a differential module. In fact we have a stronger
statement:

Theorem 1.2.8 (Cyclic Vector Theorem) Assume there exists an a € k
such that a’ # 0. Every differential module is of the form k[D]/k[O|L for
some L € k[0)].

This result has many proofs ([12, 13, 14, 15, 16, 17] to name a few), two
of which can be found in Chapter 2.1 of [5].
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Corollary 1.2.9 (Systems to Scalar equations) Let k be as above. Every
system Y' = AY 1is equivalent to a scalar equation L(y) = 0.

Proof Let A* = —At. Apply the Cyclic Vector Theorem to M 4- to find
an L € k[0] such that M 4~ = k[0]/k[0]L. If AL is the companion matrix
of L, a calculation shows that M4 ~ My, . O

We note that the hypothesis that k& contain an element a with a’ # 0
is necessary. If the derivation is trivial on k, then two matrix equations
Y’ = A1Y and Y’ = AyY are equivalent if and only if the matrices
are similar. There exist many examples of matrices not similar to a
companion matrix.

Before we leave (for now) our discussion of the ring k[9], I wish to make
two remarks.

First, we can define a map i : k[8] — k[0] by i(>_ a;07) = Y (~1)707a,,.
This map is is an involution (i? = id). Denoting i(L) = L*, we have
that (L1Lg)* = L5L;. The operator L* is referred to as the adjoint of
L. Using the adjoint one sees that there is right euclidean division as
well and that every right ideal of k[9)] is also principal.

Second, Lemma 1.2.7.2 allows us to define

Definition 1.2.10 Let Ly, Ly € k[0].

1) The least common left multiple LCLM(L1, L2) of Ly and Lo is the
monic generator of k[0)L1 N k[0]Ls.

2) The greatest common right divisor GCRD(Lq, L) of L1 and Ly is
the monic generator of k[0]L1 + k[O]Ls.

A simple modification of the usual euclidean algorithm allows one to
find these objects. One can also define least common right multiples
and greatest common left divisors using right ideals.

Solutions I will give properties of solutions of scalar and matrix linear
differential equations and define the notion of the solutions of a differ-
ential module. Let (k,0) be a differential field with constants Cj (see
Definition 1.2.1).

Lemma 1.2.11 Let vy,...v, € k™ satisfy v, = Av;, A € gl (k). If
v1,...,Up are k-linearly dependent, then they are Cy-linearly dependent.
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Proof Assume, by induction, that vs, ..., v, are k-linearly independent
and v; =Y ._, a;v;,a; € k. We then have

T T T
A ! ! !
0=v; — Av, = E av; + E ai(v; — Av;) = E ajv;
=2

1=2 i=2

so by assumption, each a; = 0. 0

Corollary 1.2.12 Let (k,0) be a differential field with constants C,
A€ gl (k) and L € k[0].

1) The solution space Solng(Y' = AY) of Y/ = AY in k™ is a Cy-vector
space of dimension at most n.

2) The elements yi,...,yr € k are linearly dependent over Cy if and
only if the wronskian determinant

n Yr
yr(ylv"'ayr) = det : :

yY‘-l) . yﬁr-l)

s zero.

3) The solution space Solng(L(y) =0)={y € k| L(y) =0} of L(y) =0
in k is a Cx-vector space of dimension at most n.

Proof 1) This follows immediately from Lemma 1.2.11.
2) If 37, ¢iy; = 0 for some ¢; € Cy, not all zero, then y.._, ciygj) =0
for all j. Therefore, wr(yy,...,yr) = 0. Conversely if wr(y1,...,y.) =0,

then there exists a nonzero vector (ao, . ..,ar—1) such that
i Y
(ao,...,a,«_l) =0
-1 ~1
N N

Therefore each y; satisfies the scalar linear differential equation L(y) =
ar—1y" V4. +agy = 0o each vector v; = (i, ¥}, . .. ,yZ(T_]))t satisfies
Y’ = ALY, where Ay is the companion matrix. Lemma 1.2.11 implies
that the v; and therefore the y; are linearly dependent over Ck.

3) Apply Lemma 1.2.11to Y’ = AL Y. O

In general, the dimension of the solution space of a linear differential
equation in a field is less than n. In the next section we will construct a
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field such that over this field the solution space has dimension n. It will
be useful to have the following definition:

Definition 1.2.13 Let (k,0) be a differential field, A € gl,,(k) and R a
differential ring containing k. A matriz Z € GL,(R) such that Z' = AZ
is called a fundamental solution matrix of Y’ = AY.

Note that if R is a field and Z is a fundamental solution matrix, then
the columns of Z form a Cg-basis of the solution space of Y’ = AY in
R and that this solution space has dimension n.

Let (M, 0) be a differential module over k. We define the solution space
Solng (M) of (M, 9) to be the kernel kerps & of @ on M. As we have noted
above, if {e;} is a basis of M and Y’ = AY is the associated matrix
differential equation in this basis, then ) . v;e; € kerd if and only if
v = Av where v = (v1,...,v,)t If K D k is a differential extension of
k, then K ®; M can be given the structure of a K-differential module,
where 0(a®@m) = o’ ® m+ a ® Om. We then define Solng (M) to be the
kernel ker(0, K ®x M) of 8 on K ®; M.

1.3 Basic Galois Theory and Applications

Galois theory of polynomials The idea behind the Galois theory of
polynomials is to associate to a polynomial a group (the group of sym-
metries of the roots that preserve all the algebraic relations among these
roots) and deduce properties of the roots from properties of this group
(for example, a solvable group implies that the roots can be expressed
in terms of radicals). This idea can be formalized in the following way.

Let k be a field (of characteristic 0 as usual) and let P(X) € k[X] be
a polynomial of degree n without repeated roots (i.e., GCD(P, P') =
1).Let
1

S =k[Xy,..., X,, % - ;)
(the reason for the term ﬁ'?"—x_ will be explained below) and let
I =(P(Xi1),...,P(Xn)) < S be the ideal generated by the P(X;). The
ring S/I is generated by n distinct roots of P but does not yet reflect
the possible algebraic relations among these roots. We therefore consider
any maximal ideal M in S containing /. This ideal can be thought of as
a maximally consistent set of algebraic relations among the roots. We
define

]
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Definition 1.3.1 1) The splitting ring of the polynomial P over k is
the ring
1

[1(X: — X5)

2) The Galois group of P (or of R over k) is the group of automorphisms
Aut(R/k).

R=S/M =k[X4,..., Xn, 1/M .

Note that since M is a maximal ideal, R is actually a field. Further-
more, since S contains H(X’}T’ the images of the X; in R are distinct
roots of P. So, in fact, R coincides with the usual notion of a splitting
field (a field generated over k by the distinct roots of P) and as such, is
unique up to k-isomorphism. Therefore, R is independent of the choice
of maximal ideal M containing I. We will follow a similar approach with
linear differential equations.

Galois theory of linear differential equations Let (k,0) be a dif-
ferential field and Y’ = AY, A € gl (k) a matrix differential equation
over k. We now want the Galois group to be the group of symmetries of
solutions preserving all algebraic and differential relations. We proceed

in a way similar to the above.

Let
1
S=kYi1,....Yon ———
e Tom i)
where Y = (Y;;) is an n x n matrix of indeterminates. We define

a derivation on S by setting Y/ = AY. The columns of Y form n
independent solutions of the matrix linear differential equation Y’ = AY
but we have not yet taken into account other possible algebraic and
differential relations. To do this, let M be any maximal differential
ideal and let R = S/M. We have now constructed a ring that satisfies
the following definition

Definition 1.3.2 Let (k,0) be a differential field and Y' = AY,A €
gl, (k) a matriz differential equation over k. A Picard-Vessiot ring (PV-
ring) for Y/ = AY s a differential ring R over k such that
(i) R is a simple differential ring (i.e., the only differential ideals are
(0) and R).
(ii) There exists a fundamental matriz Z € GL,(R) for the equation
Y = AY.
(ili) R is generated as a ring by k, the entries of Z and ﬁ.
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One can show that a PV-ring must be a domain and, if C}, is algebraically
closed, then any PV-rings for the same equation are k-isomorphic as
differential rings and Cy, = Cg. Since a PV-ring is a domain we define
a PV-field K to be the quotient field of a PV-ring. Assuming that Cy, is
algebraically closed this is the same as saying that K is generated over
k by the entries of a fundamental solution matrix and that Cx = Cj.
These facts are proven in Chapter 1.2 of [5]. From now on, we will always
assume that Cy, is algebraically closed (see [18, 19, 3, 20] for results when
this is not the case) .

Examples 1.3.3 1) k = C(z) 2/ =1 a € C Y = 2Y § =
kY. ¢ Y =2Y

Case 1: a = L&, GCD(n,m) = 1.1 claim that R = k[Y, 3]/[Y™—a"] =
k(z). To see this note that the ideal (Y™ — ™) <k[Y, &] is a mazimal
ideal and closed under differentiation since (Y™ —z™) = 2(Y™ — z™).

Case 2: o ¢ Q. In this case, I claim that (0) is a mazimal differential
ideal and so R = k[Y, +]. To see this, first note that for any f € C(z),

Y
f n;
=y — _n,€Za eC
f 2 (z—ai) " '
and this can never equal % Therefore Y' = %Y has no monzero

solutions in C(x). Now assume I is a proper nonzero differential ideal
in K[Y, +]. One sees that I is of the form I = (f) where f = YN +
an—1YN "'+ ... +a9, N> 0. Since Y is invertible, we may assume
that ag # 0. Since f' € (f), by comparing leading terms we have that
f'= %f and so af = %ao, a contradiction.

2)k=C(z) /=1 Y' =Y. Let S = k[Y, +]. An argument similar to
Case 2 above shows that (0) is the only proper differential ideal so the
PV-ring is k[Y, &].

As expected the differential Galois group is defined as

Definition 1.3.4 Let (k, ) be a differential field and R a PV-ring over
k. The differential Galois group of R over k, DGal(R/k) is the group
{o: R— R| o is a differential k-isomorphism}.

If R is the PV-ring associated with Y’ = AY, A € gl (k), we sometimes
denote the differential Galois group by DGal(Y’ = AY). If K is a PV-
field over k, then the k-differential automorphisms of K over k are can
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be identified with the differential k-automorphisms of R over k where R
is a PV-ring whose quotient field is K.

Let R be a PV-ring for the equation Y’ = AY over k and 0 € DGal(R/k).
Fix a fundamental solution matrix Z and let o € DGal(R/k). We then
have that o(Z) is again a fundamental solution matrix of Y’ = AY
and a calculation shows that (Z~'0(Z))’ = 0. Therefore, 0(Z) = Zm,
for some m, € GL,(Cy). This gives an injective group homomorphism
o — m, of DGal(R/k) into GL,(C,). If we select a different fundamen-
tal solution matrix, the images of the resulting maps would be conjugate.
The image has a further property.

Definition 1.3.5 A subgroup G of GL,,(Ck) is said to be a linear alge-
braic group if it is the zero set in GL,(Ck) of a system of polynomials

over Cy in n? variables.

With the identification above DGal(R/k) C GL,,(Cx) we have
Proposition 1.3.6 DGal(R/k) C GL,(C%) is a linear algebraic group.

Proof Let R = k[Y, :4w]1/M, M = (f1,..., fm). We may assume that
the f; € k[Y11,...,Ynn]. We may identify DGal(R/k) with the sub-
group of o € GL,,(C}) such that o(M) C M. Let Wi be the Ci-space of
polynomials in k(Y1 1,. .., Y »] of degree at most N. Note that GL,,(Ck)
acts on k[Y11,..., Yn ] by substitution and leaves Wy invariant. If N
is the maximum of the degrees of the f; then Vy = Wy N M generates
M and we may identify DGal(R/k) with the group of o € GL,(Ck)
such that (V) C Vy. Let {e4} 4 be a C-basis of Wy with {es}acBcA
a C-basis of Viy. For any 8 € A there exist polynomials pas(z;;) such

that for any 0 = (c;;) € GLy, o(eg) = >, Pap(Cij)ea. We then have
that o = (¢;;) € DGal(R/k) if and only if pag(cij) = 0 for all B € B and
a ¢ B. O

Examples 1.3.7 1) k =C(z) 2’ =1 Y'=2Y DGal C GL;(C).
Form the above description of the differential Galois group as the group
laving a certain ideal invariant, we see (using the information of Exam-
ple 1.3.3):

Case 1: a = 2 GCD(n,m) =1. We then have R = C[Y, +]/(Y™ —
z") = C(z)[xm]. Therefore DGal = Z/mZ = {(c) | ¢ —1 = 0} C

Q
£
G
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Case 2: a ¢ Q. we have R = C(z)[Y, +]/(0). Therefore DGal = GL;(C).
2)k=C(z) ¢’ =1Y' =Y. As above, one sees that DGal = GL;(C)

In general, it is not easy to compute Galois groups (although there is a
complete algorithm due to Hrushovski [21]). We will give more examples
in Sections 1.4, 1.5, and 1.6.

One can define the differential Galois group of a differential module in the
following way. Let M be a differential module. Once we have selected
a basis, we may assume that M =~ My, where M4 is the differential
module associated with Y/ = AY. We say that Y/ = AY is a matrix
linear differential equation associated with M.

Definition 1.3.8 Let M be a differential module over k. The differential
Galois group of M 1is the differential Galois group of an associated matriz
linear differential equation.

To show that this definition makes sense we must show (see the discus-
sion before Definition 1.2.5) that equivalent matrix differential equations
have the same differential Galois groups. Let Y/ = A;Y, Y’ = AY be
equivalent equations and let A; = B~'A;B — B~'B’, B € GL,(k). If
R = k[Z;, Z%] is a PV-ring for Y’ = A,Y, then a computation shows
that Zy = BZ,; is a fundamental solution matrix for Y/ = A,Y and
so R will also be a PV-ring for Y’ = A3Y. The equation Z; = BZ;
furthermore shows that the action of the differential Galois group (as a
matrix group) on Z; and Zj is the same.

We now state

Theorem 1.3.9 (Fundamental Theorem of Differential Galois
Theory) Let k be a differential field with algebraically closed constants
Cy. Let K be a Picard-Vessiot field with differential Galois group G.

1) There is a bijective correspondence between Zariski-closed subgroups
H C G and differential subfields F', k C F C K given by

HcG — K{'={aeK|o(a)=aforaloecH}
kcFCK ~— DGa(K/F)={c€G|o(a)=a foralaecF}
2) A differential subfield k C F C K is a Picard-Vessiot ectension of

k if and only if DGal(K/F) is a normal subgroup of G, in which case
DGal(F/k) ~ DGal(K /k)DGal(K/F).
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The Zariski closed sets form the collection of closed sets of a topology on
GL,, and one can speak of closures, components, etc. in this topology. In
this topology, each linear algebraic group G may be written (uniquely)
as the finite disjoint union of connected closed subsets (see Appendix A
of [22] or [23] for a further discussion of linear algebraic groups). The
connected component containing the identity matrix is denoted by G°
and is referred to as the identity component. It is a normal subgroup of
G. As a consequence of the Fundamental Theorem, one can show the
following:

Corollary 1.3.10 Let k, K and G be as above.
1) For a € K, we have that a € k < o(a) = a Yo € DGal(K/k)

2) For H C DGal(K/k), the Zariski closure H is DGal(K/k) if and
only if K =k

3) K G s precisely the algebraic closure k of k in K.

I refer the reader to Chapter 1.3 of [5] for the proof of the Fundamental
Theorem and its corollary.

Example 1.3.11 y' = 2y o ¢ Q, k=C(z) K = k(z*) DGal =
GL, =C*

The Zariski-closed subsets of C* are finite so the closed subgroups are
finite and cyclic. We have the following correspondence

Groups Fields

{1} © k()
N U

{1’ eQﬂ'ri/n7 e eQ(n-—l)ﬂi/n} o k(a.noz)
N U
Cc* & k

The Fundamental Theorem also follows from a deeper fact giving geo-
metric meaning to the Picard-Vessiot ring and relating this to the Galois

group.

Galois theory and torsors Let &k be a field (not necessarily a differ-
ential field) and k its algebraic closure. I wish to refine the notion of
a Zariski closed set in order to keep track of the field over which these
objects are defined.
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Definition 1.3.12 1) A Zariski closed subset V C k™ is called a variety
defined over k or k-variety if it is the set of common zeroes of polynomials
2) If V is a variety defined over k, the k-ideal of V, I(V), is {f €
k[Xi1,...,Xn] | f(a)=0 foralla € X}.

3) If V is a variety defined over k, the k-coordinate ring, k[V], of V is
the ring k[X1,..., Xn]/1(V).

4) IfV C k™ and W C k™, a k-morphism f : V — W is an n-tuple of
polynomials f = (f1,..., fn) in k[X1,..., X,] such that f(a) € W for
allaeV.

5) We say two k-varieties V and W are k-isomorphic if there are k-
morphisms f:V — W and g : W — V such that fg and gf are the
identity maps.

Note that the coordinate ring is isomorphic to the ring of k-morphisms
from V to k. Also note that a k-morphism f : V — W induces a k-
algebra homomorphism f* : k[W] — k[V] given by f*(g)(v) = g(f(v))
for ve V and g € k[W].

Examples 1.3.13 1) The affine spaces k™ are Q-varieties and, as such,
their coordinate rings are just the rings of polynomials Q[ X1, ..., X,].

2) The group of invertible matrices GL,, (k) is also a Q-variety. In order
to think of it as a closed set, we must embed each invertible matriz A

) ) A 0 o .
n the n+ 1 x n+ 1 matric ( 0 det(A) > The defining ideal in

QX115+, Xnt1.n+1] ts generated by
Xn+1,17 RS} Xn+1,nw Xl,n+la D 7Xn,n+la (det X) - Xn+1,n+l

where X is the n x n matriz with entries X;;,1 <1 <n,1 <j<n. The
coordinate ring is the ring Q[X11,..., Xnn, 3o5)

Examples 1.3.14 1) Letk = Q and V = {a | a®?~2 =0} C Q. We have
that To(V) = (X? - 2) C Q[X] and k[V] = QIX]/(X? - 2) = Q(v2).
Note that in this setting “v2” is a function on V, defined over Q with
values in Q and not a number!

2) Letk=Q and W = {a | a®> — 1 = 0} = {£1} ¢ Q. We have that
Ip(W) = (X? —1) and k[W] = Q[X]/(X? - 1) = Q& Q.

3) Note that V and W are not Q-isomorphic since such an isomorphism
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would induce an isomorphism of their Q-coordinate rings. If we consider
V and W as Q-varieties, then the map f(z) = (vV2(x—1)+v2(z+1))/2
gives a Q-isomorphism of W to V.

We shall be interested in certain k-subvarieties of GL, (k) that have a
group acting on them. These are described in the following definition (a
more general definition of torsor is given in Appendix A of [5] but the
definition below suffices for our present needs).

Definition 1.3.15 Let G C GL, (k) be a linear algebraic group defined
over k and V C GL, (k) a k-variety. We say that V is a G-torsor (or
G-principal homogeneous space) over k if for all v,w € V there exists
a unique g € G such that vg = w. Two G-torsors V,W € GL, (k)
are said to be k-isomorphic if there is a k-isomorphism between the two
commuting with the action of G.

Examples 1.3.16 1) G itself is always a G-torsor.
2) Let k=Qand V = {a | a®> —2 = 0} C Q. We have that V C

Q* = GL1(Q). Let G = {+1} € GL{(Q). It is easy to see that V is a
G-torsor. As noted in the previous examples, the torsors V and G are

not isomorphic over Q but are isomorphic over Q.

We say a G-torsor over k is trivial if it is k-isomorphic to G itself. One
has the following criterion.

Lemma 1.3.17 A G-torsor V over k is trivial if and only if it con-
tains a point with coordinates in k. In particular, any G-torsor over an
algebraically closed field is trivial.

Proof If V contains a point v with coordinates in k then the map g — xg
is defined over k and gives a k-isomorphism between G and V (with
inverse v — z71v). If V is trivial and f : G — V is an isomorphism
defined over k, then f(id) has coordinates in k and so is a k-point of
V. O

For connected groups G, there are other fields for which all torsors
are trivial.

Proposition 1.3.18 Let G be a connected linear algebraic group de-
fined over k and V' a G-torsor over k. If k is an algebraic extension of
C(z),C((x)), or C({x}), then V is a trivial G-torsor.
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Proof This result is due to Steinberg, see [24], Chapter I11.2.3 O

Another way of saying that V is a G torsor is to say that V is defined
over k and is a left coset of G in GL, (k). Because of this one would
expect that V and G share many geometric properties. The one we
will be interested in concerns the dimension. We say that a k-variety
V is irreducible if it is not the union of two proper k-varieties. This is
equivalent to saying that [ (V') is a prime ideal or, equivalently, that
k[V] is an integral domain. For an irreducible k-variety V, one defines
the dimension of V, dim(V) to be the transcendence degree of k(V)
over k, where k(V') is the quotient field of k[V]. For example, if k = C
and V is a k-variety that is nonsingular as a complex manifold, then the
dimension in the above sense is just the dimension as a complex manifold
(this happens for example when V' is a subgroup of GL,,(C)). In general,
any k-variety V' can be written as the irredundant union of irreducible
k-varieties, called the irreducible components of V, and the dimension
of V is defined to be the maximum of the dimensions of its irreducible
components. One can show that if & C K, then dimg (V) = dimg (V)
and in particular, dimg(V) = dim; V (see [5], Appendix A for more
information about k-varieties).

Proposition 1.3.19 If V is a G-torsor, then dimg (V) = dimg(G).

Proof As noted above, any G-torsor over k is trivial when considered
as a k torsor. We therefore have dimg (V) = dimg(V) = dimg(G) =
dimg (G). O

The reason for introducing the concept of a G-torsor in this paper is the
following proposition. We use the fact that if V is a G-torsor over k
and g € G, then the isomorphism py : v +— vg induces an isomorphism
Py - k[V] — k[V].

Proposition 1.3.20 Let R be a Picard- Vessiot extension with differ-
ential Galois group G. Then R is the coordinate ring of a G-torsor
V' defined over k. Furthermore, for o € G, the Galois action of o on
R = k[V] is the same as p.

Corollary 1.3.21 1) If K is a Picard-Vessiot field over k with Galois
group G, then dimg, G = tr.deg.(K/k).

2) If R is a Picard-Vessiot ring over k with Galois group G where k is
either algebraically closed, C(x), C((z)), or C({z}), then R ~ k[G].
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We refer to Chapter 1.3 of [5] for a proof of the proposition and note
that the Fundamental Theorem of Galois Theory is shown there to fol-
low from this proposition.

Applications and ramifications. I shall discuss the following appli-
cations and ramifications of the differential Galois theory

e Monodromy

e Factorization of linear differential operators

e Transcendental numbers

e Why doesn’t secz satisfy a linear differential equation?
e Systems of linear partial differential equations

Another application concerning solving linear differential equations in
terms of special functions and algorithms to do this will be discussed in
Section 1.5. The Picard-Vessiot theory has also been used to identify
obstructions to complete integrability of Hamiltonian systems (see [25]
or [26]).

Monodromy. We will now consider differential equations over the com-
plex numbers, so let k = C(z), '’ =1 and

dy
= A@Y, A) € 81, (C)) (1.1)
Definition 1.3.22 A point zy € C is an ordinary point of equation (1.1)
if all the entries of A(x) are analytic at xg, otherwise xg is a singular

point.

One can also consider the point at infinity, co. Let t = % We then have
that % = —t%A(%)Y. The point 2 = oo is an ordinary or singular point
precisely when ¢ = 0 is an ordinary or singular point of the transformed

equation.

Example 1.3.23 % =2y = % = —%y so the singular points are
{0, 00}

Let S = CP! be the Riemann Sphere and let

X = 82 — {singular points of (1.1)} and let o € X. From standard
existence theorems, we know that in a small neighborhood O of zg,
there exists a fundamental matrix Z whose entries are analytic in O.
Let v be a closed curve in X based at xg. Analytic continuation along
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v yields a new fundamental solution matrix Z, at zo which must be
related to the old fundamental matrix as

Z, = ZD,

where D, € GL,(C). One can show that D., just depends on the homo-
topy class of «. This defines a homomorphism

Mon : m(X,z9) — GL,(C)
¥ — D,

Definition 1.3.24 The homomorphism Mon is called the monodromy
map and its image is called the monodromy group.

Note that the monodromy group depends on the choice of Z so it is only
determined up to conjugation. Since analytic continuation preserves
analytic relations, we have that the monodromy group is contained in
the differential Galois group.

Examples 1.3.25 1) y' =
{0, 00}

y (y = e*1°8% = ) Singular points =

8|Q

Mon(1 (X, o)) = {(e*™)™ | n € Z}

If « € Q this image is finite and so equals the differential Galois group.
If « ¢ Q, then this image is infinite and so Zariski dense in GL1(C).
In either cose the monodromy group is Zariski dense in the differential
Galois group.

2)y =y (y=€%), Singular points = {0}
MOII(7T1(X, .'E())) = {1}

In this ezample the differential Galois group is GL1(C) and the mon-
odromy group s not Zariski dense in this group.

The second example shows that the monodromy group is not necessarily
Zariski dense in the differential Galois group but the first example sug-
gests that under certain conditions it may be. To state these conditions
we need the following definitions.

Definition 1.3.26 1) An open sector S = S(a,b,p) at a point p is
the set of complex numbers z # p such that arg(z — p) € (a,b) and
|z — p| < p(arg(z — p)) where p: (a,b) — Rsq is a continuous function.

2) A singular point p of Y’ = AY is a regular singular point if for any
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open sector S(a, b, p) at p with |a — b| < 27, there exists a fundamental
solution matriz Z = (zi;), analytic in S such that for some positive
constant ¢ and integer N, |z;;| < c|lz™V| asz — p in S.

Note that in the first example above, the singular points are regular
while in the second they are not. For scalar linear differential equations
L(y) = y™ + an_1y™™ Y + ... + agy = 0, the criterion of Fuchs states
that p is a regular singular point if and only if each a; has a pole of
order < n — ¢ at p (see Chapter 5.1 of [5] for a further discussion of
regular singular points). For equations with only regular singular points
we have

Proposition 1.3.27 (Schilesinger) If Y' = AY has only regular singular
points, then Mon(m1(X,xo)) is Zariski dense in DGal.

Proof Let K = PV extension field of k for Y/ = AY. We have
Mon(m1(X,z0)) C DGal(K/k). By Corollary 1.3.10 it is enough to
show that if f € K is left fixed by Mon(m1(X,z0)) then f € k = C(z).
If f is left invariant by analytic continuation on X, then f is a sin-
gle valued meromorphic function on X. Let Z = (z;;),2; € K be a
fundamental solution matrix and let f € C(z,zi;). Regular singular
points imply that f has polynomial growth near the singular points of
Y’ = AY and is at worst meromorphic at other points on the Riemann
Sphere. Cauchy’s Theorem implies that f is meromorphic on the Rie-
mann Sphere and Liouville’s Theorem implies that f must be a rational
function. O

In Section 1.4, we shall see what other analytic information one needs
to determine the differential Galois group in general.

Factorization of linear differential operators. In Section 1.5, we will see
that factorization properties of linear differential operators and differ-
ential modules play a crucial role in algorithms to calculate properties
of Galois groups. Here I shall relate factorization of operators to the
Galois theory.

Let k be a differential field, k[J)] the ring of differential operators over k
and L € k[d]. Let K be the PV-field over k corresponding to L(y) = 0,
G its Galois group and V = Solng (L(y) = 0).
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Proposition 1.3.28 There is a correspondence among the following
objects

(i) Monic Lo € k[0] such that L = L - L.
(ii) Differential submodules of k[0]/k[0]L.
(i) G-invariant subspaces of V.

Proof Let W C V be G-invariant and B = {b1,...,b:} a Cy-basis of W.
For o € G, let [0]p be the matrix of o|w with respect to B,

bl N bt bl cee bt

o( : : : )= ; : : [o]5 -

—~1 -1 t—1 -1
A oD Y
Taking determinants we have o (wr(b1, ..., b)) = wr(by, ..., b:) det([o]B).
Define Ly (Y) = %2 Using the above, we have that the co-
efficients of Ly are left fixed by the differential Galois group and so
lie in k. Therefore Ly € k[d]. Furthermore, Corollary 1.2.12 im-
plies that Ly vanishes on W. If we write L = Ly - Lw + R where
ord(R) < ord(Lw ), one sees that R also vanishes on W. Since the di-
mension of W = ord(Lw ), Corollary 1.2.12 again implies that R = 0.
Therefore W is the solution space of the right factor Ly of L.

Let Lo € k[0] with L = Ly - Lg. Let W = Solng(Lo(y) = 0). We
have that Lo maps V into Solng (L1 (y) = 0). Furthermore we have the
following implications

o Im(Lo) C Solnk(L1(y) = 0) = dime, (Im(Lo)) < ord(L1)

e Ker(Lg) = Solnk(Lo(y) = 0) = dime, (Ker(Lo)) < ord(Lo)

e n =dim¢, (V) = dime, (Im(Lyg)) + dime, (Ker(Lg)) <
ord(L;) 4+ ord(Lo) =n

Therefore dimc, Solnk(Lo(y) = 0) = ord(Lg). This now implies that
the association of G-invariant subspaces of V' to right factors of L is a
bijection.
I will now describe the correspondence between right factors of L and
submodules of k[]/k[0]L. One easily checks that if L = L;Lg, then
k[O|L C k[0]Lo so M = k[0]Lo/k[0]L C k[0]/k[O]L. Conversely let M
be a differential submodule of k[9]/k[0]L. Let = : k[0] — k[8]/k[0]L and
M = n=Y(M). M = k[0]Ly for some Lg € k[9]. Since L € M, L = L;Ly.
O
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By induction on the order, one can show that any differential operator
can be written as a product of irreducible operators. This need not be
unique (for example 02 = 9-89 = (0 + %)(0 — 1)) but a version of the
Jordan-Hoélder Theorem implies that if L Ly-...- L. = Ly-... - Lg then
r = s and, after possibly renumbering, k[d]/k[0]L; ~ k[8]/k[d]L; ([5],
Chapter 2).

One can also characterize submodules of differential modules in terms of
corresponding matrix linear differential equations. Let Y’ = AY corre-
spond to the differential module M of dimension n. One then has that

M has a proper submodule of dimension ¢ if and only if Y/ = AY is

equivalent to Y’ = BY, B = ( lzo gl ) By € gl (k).
2

Transcendental numbers. Results of Siegel and Shidlovski (and subse-
quent authors) reduce the problem of showing that the values of certain
functions are algebraically independent to showing that these functions
are themselves algebraically independent. The Galois theory of linear
differential equations can be used to do this.

Definition 1.3.29 f =Y/ an% € Q[[#]] is an E-function if 3 c € Q
such that, for all n, |a,| < ¢ and the least common denominator of
agy---,0, <.

Examples 1.3.30 e = ) %}, Jo(z) =) %7
Theorem 1.3.31 (Siegel-Shidlovski, c.f., [27]): If fi,...,[s are E-

functions, algebraically independent over Q(z) and satisfy a linear dif-
ferential equation

L(y) = y(m) + am_ly("_l) +...4+aoy, a;€Q(z)

then for o € Q,a # 0 and « not a pole of the a;, the numbers
fi(@), ..., fs(a) are algebraically independent over Q.

The differential Galois group of L(y) = 0 measures the algebraic re-
lations among solutions. In particular, Corollary 1.3.21 implies that

if y1,...yn are a Q-basis of the solution space of L(y) = 0 then the

transcendence degree of Q(z) (Y1, - - Yns ¥hr- Y,y D)

over Q(z) is equal to the dimension of the differential Galois group of
L(y) = 0.
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Example 1.3.32 The differential Galois group of the Bessel equations
y' + Ly +(1- i‘—;)y =0, A— 3 ¢ Z over Q(z) can be shown to be
SLy (/28]) and examining the recurrence defining a power series solution
of this equation, one sees that the solutions are E-functions. Given a
fundamental set of solutions {Jx,Yr} we have that the transcendence
degree of Q(x)(Jx, Y, J4, YY) over Q(z) is 3 (one can show that J»Yy —
J5, Y\ € Q(x). Therefore one can apply the Siegel-Shidlovski Theorem to
show that certain values of Jx,Yx and J§ are algebraically independent
over Q.

Why does cosx satisfy a linear differential equation over C(z), while

secx does not? There are many reasons for this. For example, secx =
Colsx has an infinite number of poles which is impossible for a solution of
a linear differential equation over C(z). The following result, originally
due to Harris and Sibuya [29], also yields this result and can be proven

using differential Galois theory [30].

Proposition 1.3.33 Let k be a differential field with algebraically closed
constants and K a PV -field of k. Assume y # 0,1/y € K satisfy linear
differential equations over k. Then %— 1s algebraic over k.

Proof (Outline) We may assume that k is algebraically closed and that
K is the quotient field of a PV-ring R. Corollary 1.3.21 implies that
R = k[G] where G is an algebraic group whose Cy points form the
Galois group of R over k. Since both y and i satisfy linear differential
equations over k, their orbits under the action of the Galois group span
a finite dimensional vector space over Cx. This in turn implies the
orbit of that y and % induced by the the action of G(k) on G(k) by
right multiplication is finite dimensional. The general theory of linear
algebraic groups [23] tells us that this implies that these elements must
lie in k[G]. A result of Rosenlicht [31, 32] implies that y = af where
a € k and f € k[G] satisfies f(gh) = f(g9)f(h) for all g,h € G. In
particular, for 0 € G(Ck) = Aut(K/k), we have o(f(z)) = f(zo) =
f(z)f(o). If L € k[0] is of minimal positive order such that L(f) = 0,
then 0 = o(L(f)) = L(f- f(0)) and a calculation shows that this implies
that f(o) € Ck.

We therefore have that, for all ¢ € Aut(K / k) there exists a ¢, € C
such that o(y) = coy. This implies that - is left fixed by Aut(K/k)
and so must be in k. O
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If y = cosz and 1 = secz both satisfy linear differential equations over
Q(z), then the above result implies that tanz would be algebraic over
Q(z). One can show that this is not the case by noting that a periodic
function that is algebraic over Q(z) must be constant, a contradiction.
Another proof can be given by starting with a putative minimal poly-
nomial P(Y) € C(z)[Y] and noting that 42 + 42y’ = 48 dB(y2 4 q)
must be divisible by P. Comparing coefficients, one sees that the coefli-
cients of powers of Y must be constant and so tanz would be constant.

Systems of linear partial differential equations. Let (k,A = {01,...,0m}
be a partial differential field. One can define the ring of linear partial
differential operators k[d1,...,0m,] as the noncommutative polynomial
ring in 81,...,0mn where 0; - a = 9;(a) + ad; for all a € k. In this con-
text, a differential module is a finite dimensional k-space that is a left
k[O1,. .. ,0m]-module. We have

Proposition 1.3.34 Assume k contains an element a such that 9;(a) #
0 for some i. There is a correspondence between

o differential modules,

o left ideals I C k[0, ..., 0m] such that dimg k[y, . ..,0n]/] < o0,
and

o systems 0;Y = A;)Y, A gl (k),i=1,...m such that

0i(Aj) + AiA; = 0;(Ai) + A; A
i.e., integrable systems.

1t
8Y = AY,Acgl (k),i=1,...m

is an integrable system, the solution space over any differential field
is finite dimensional over constants. Furthermore, one can define PV
extensions, differential Galois groups, etc. for such systems and develop
a Galois theory whose groups are linear algebraic groups. For further
details see [3, 33] and Appendix D of [5].

1.4 Local Galois Theory

In the previous section, we showed that for equations with only regular
singular points the analytically defined monodromy group determines
the differential Galois group. In this section we shall give an idea of what



Galois Theory of Linear Differential Equations 25

analytic information determines the Galois group for general singular
points. We shall use the following notation:

Clla]] = {XZp @iz’ |ai €C}, 2’ =1

C((z)) = quotient field of C[[z]] = C[[z]][z~}]

C{{z}} = {f € C[[z]] | f converges in a neighborhood Oy of 0}
C({z}) = quotient field of C{{z}} = C{{z}}[z 7]

Note that

C(z) c C({z}) c C(())
We shall consider equations of the form
=AY (1.2)

with A € gl (C({z})) or gl,,(C((z))) and discuss the form of solutions
of such equations as well as the Galois groups relative to the base fields
C({z}) and C((z)). We start with the simplest case:

Ordinary points. We say that ¢ = 0 is an ordinary point of equa-
tion (1.2) if A € gl,,(C][[z]]). The standard existence theory (see [34] for
a classical introduction or [35]) yields the following:

Proposition 1.4.1 If A € gl,,(C[[z]]) then there ezists a unique Y €
L, (C[[z]] such that Y' = AY and Y(0) is the identity matriz. If
A € gl (C({z})) then we furthermore have that Y € GL,(C({z})).

This implies that for ordinary points with A € gl (k) where k = C({z})
or C((z)), the Galois group of the associated Picard-Vessiot extension
over k is trivial. The next case to consider is

Regular singular points. From now on we shall consider equations
of the form (1.2) with A € C({z}) (although some of what we say can
be adapted to the case when A € C((z))). We defined the notion of
a regular singular point in Definition 1.3.26. The following proposition
gives equivalent conditions (see Chapter 5.1.1 of [5] for a proof of the
equivalences).

Proposition 1.4.2 Assume A € gl,,(C({z})). The following are equiv-
alent:
(i) Y’ AY is equivalent over C((z)) to Y' = 42y, A € g, (C).
(i) Y' = AY is equivalent over C({z}) to Y’ = JY Ap € gl,,(C).
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(iii) For any small sector S(a,b, p), la—b| < 27, at 0, 3 a fundamental
solution matriz Z = (zi;), analytic in S such that |z;| < |z|V
for some integer N as z — 0 (regular growth of solutions).

(iv) Y = AY has a fundamental solution matriz of the form Y =
T4 Z Ag € gl,,(C), Z € GL,(C({z})).

(v) Y = AY is equivalent to y™ + an_1y™V + ... + agy, a; €
C({z}), where ordz=pa; > i — n.

(vi) Y' = AY s equivalent to y™ + an_1y"" D + ...+ aoy, a; €
C({z}), having n linearly independent solutions of the form
z* Y0 o ci(z)(logz)t, a € C,¢i(z) € C{{x}}.

We now turn to the Galois groups. We first consider the Galois group
of a regular singular equation over C({z}). Let O be a connected open
neighborhood of 0 such that the entries of A are regular in O with at
worst a pole at 0. Let g # 0 be a point of O and « a simple loop around
0 in O based at xg. There exists a fundamental solution matrix Z at zg
and the fleld K = k(Z, 1), k = C({z}) is a Picard-Vessiot extension
of k. Analytic continuation around < gives a new fundamental solution
matrix Z, = ZM.,, for some M, € GL,(C). The matrix M, depends on
the choice of Z and so is determined only up to conjugation. Nonethe-
less, it is referred to as the monodromy matriz at 0. As in our discussion
of monodromy in Section 1.5, we see that M, is in the differential Galois
group DGal(K/k) and, arguing as in Proposition 1.3.27, one sees that
M., generates a cyclic group that is Zariski dense in DGal(K/k). From
the theory of linear algebraic groups, one can show that a linear alge-
braic group which has a Zariski dense cyclic subgroup must be of the
form (C*, x)" x (C,+)®* X Z/mZ, r > 0, s € {0,1} and that any such
group occurs as a differential Galois group of a regular singular equation
over k. (Exercise 5.3 of [5]). This is not too surprising since property
(vi) of the above proposition shows that K is contained in a field of the
form k(z®,...,2%  logz) for some «; € C.

Since C({z}) € C((z)) = k, we can consider the the field K = k(Z, =)

where Z is as above. Again, using (vi) above, we have that K C F =
k(wal,...,xar,log z) for some «; € C. Since we are no longer dealing
with analytic functions, we cannot appeal to analytic continuation but
we can define a formal monodromy, that is a differential automorphism
of F over k that sends z* — z%¢?™® and logz — logx + 2mi. One
can show that the only elements of F' that are left fixed by this auto-
morphism lie in k. This automorphism restricts to an automorphism of

K. Therefore the Fundamental Theorem implies that the group gener-
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ated by the formal monodromy is Zariski dense in the differential Galois
group DGal(K /k). The restriction of the formal monodromy to K (as
above) is just the usual monodromy, so one sees that the convergent
Galois group DGal(K/k) equals the formal Galois group DGal(K /k).

We note that the existence of n linearly independent solutions of the
form described in (vi) goes back to Fuchs in the 19*" Century and they
can be constructed using the Frobenius method (see [36] for an historical
account of the development of linear differential equations in the 19%?
Century).

Irregular singular points. We say x = 0 is an irregular singular point
if it is not ordinary or regular. Fabry, in the 19** Century, constructed
a fundamental set of formal solutions of a scalar linear differential equa-
tion at an irregular singular point. In terms of linear systems, every
equation of the form Y’ = AY, A € gl,(C((x))) has a fundamental
solution matrix of the form

Y = qg(t)xLeQ(l/t)
where

e tY=2z,ve{l,2,3,...,nl}

* o(t) € GLo(C((1)))

o Legl (C)

L4 Q = diag(fh, e 7qn)7qi S %(C[%]
e L and @) commute.

One refers to the integer v as the ramification at 0 and the polyno-
mial ¢; as the eigenvalues at 0 of the equation. We note that even if
A € gl (C({z})), the matrix ¢(t) does not necessarily lie in gl,, (C({t})).
There are various ways to make this representation unique but we will
not deal with this here. We also note that by adjusting the term
2L, we can always assume that no ramification occurs in ¢(t), that is,
¢ € GL,(C((z))) (but one may lose the last commutativity property
above). As in the regular case, there are algorithms to determine a fun-
damental matrix of this form. We refer to Chapter 3 of [5] for a detailed
discussion of the existence of these formal solutions and algorithms to
calculate them and p. 98 of [5] for historical references and references to
some recent work.

I will now give two examples (taken from [37]).
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Example 1.4.3 (Euler Eqn) 2y +y ==z
This inhomogeneous equation has a solution § = Y oo (—1)"nlz™t1l.

By applying the operator xd% — 1 to both sides of this equation we get a

second order homogeneous equation x3y" + (2 + x)y’' — y = 0 which, in
matriz form becomes

dYy 0 1 (y
E‘(gg —<;+gz>>”’ Y‘(y)

This matrix equation has a fundamental solution matrix of the form
Y = ¢(z)eQ, where

I A R A Y S et
0 0 _;15 f/ n=0 '
There is no ramification here (i.e., v=1).

Example 1.4.4 (Airy Fquation) vy’ = xy

The singular point of this equation is at oo. If we let z = ;10- the equation
becomes 2%y + 22%y’ —y = 0 or in matriz form

z5 z

This equation has a fundamental matriz of the form Y = &(z)z" UeRW)
where

The ramification is v = 2. The precise form of (Z)(z) is not important at
the moment but we do note that it lies in GL,(C((2))) (see [37] for the
precise form).

We now turn to the Galois groups over C((z)) and C({z}).

Galois Group over C((z)): the Formal Galois Group at = 0. We con-
sider the differential equation Y’ = AY, A € gl,,(C((z))). To simplify the
presentation while capturing many of the essential ideas we shall assume
that there is no ramification in é, that is, the equation has a fundamental
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solution matrix ¥ = ¢(z)zLeR/) | with ¢(z) € gl,,(C((z))). The map
Yo — $(x)Y, defines an equivalence over C((z)) between the equations

YOI = A()Yo and Y/ =AY
where Ag = qAb_lAqAS — 1.

Definition 1.4.5 The equation Y' = AyY is called a Normal Form of
= AY. It has Yy = 2Le9(1/?) 45 o fundamental solution matriz.

Example 1.4.6 (Euler Equation) For this equation (Example 1.4.3),

L0
. dY, -5 0 ( 8 0)
the normal form is <22 = AoYp, Ao = 6” 0 Yo=e

Example 1.4.7 (Airy Equation) Using the solution in Example 1.4.4,
we get a normal form < M = AoYy with solution Yy = zLUeQM/Y with
L,Q,t as in Example 1. 4 4.

The map Yy — éS(w)Yo defines an isomorphism between the solutions
spaces of Yj = AoYp and Y/ = AY and a calculation shows that F =
¢(z) satisfies the differential equation

d—F = AF — FA,.
dx

Since the normal form is equivalent over C((z)) to the original equation,
its differential Galois group over C((z)) is the same as that of the original
equation.

Let K be the Picard Vessiot extension of C((z)) for fyi = AYp (and
therefore also for = AY). We have that

KCE= C((m))(w%,zm,. 2% loga, en @), em @)
We shall describe some differential automorphisms of E over C((z)):

(1) Formal Monodromy +: This is a differential automorphism of E given
by the following conditions

° ,Y(xr) — e21rirl.r
e Y(logz) =logz + 2mi
° ’Y(QQ(II/V)) = e‘l(czl/u), C=e"
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(2) Exponential Torus 7: This is the group of differential automorphisms

T = DGal(E/F) where E = F(e‘“(’”l/u)7 e ,eq"(xl/u))) and
F=C((z))(z¥,z*,...,z° logz). Note that for o € T:

o g(z")=2a"
o o(logz) =logzx
o o(e?=)) = ¢ ea@?)

so we may identify 7 with a subgroup of (C*)™. One can show (Propo-
sition 3.25 of [5])

Proposition 1.4.8 If f € E is left fized by v and T, then f € C((z)).

The formal monodromy and the elements of the exponential torus re-
strict to differential automorphisms of K over C((x)) and are again called
by these names. Therefore the above proposition and the Fundamental
Theorem imply

Theorem 1.4.9 The differential Galois group of Y' = AY over C((z))
is the Zariski closure of the group generated by the formal monodromy
and the exponential torus.

One can furthermore show (Proposition 3.25 of [5]) that £ = 0 is a
regular singular point if and only if the exponential torus is trivial.

Example 1.4.10 (Euler Equation) We continue using the notation of
Ezamples 1.4.3 and 1.4.6. One sees that K = E = C((z))(e*) in
this case. Furthermore, the formal monodromy is trivial. Therefore

DGal(K/C((x))) is equal to the exponential torus T = {( f) (1) ) |ce
Cc*}
Example 1.4.11 (Airy Equation) We continue using the notation of Ez-

amples 1.4.4 and 1.4.7. In this case F = C((2))(23) and E = F(e#).
0 v—1 .

The formal monodromy v = ( VT o ) and the exponential torus

T = {( S 091 ) | ¢ # 0}. Therefore

DGal(K/C((z))) = Do = {( g 091 )Ic#O}U{< _3.1 g )Ic#o}
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Galois Group over C({z}): the Convergent Galois Group at x = 0. We

now assume that we are considering a differential equation with % =
AY with A € C({z}) and we let K be the Picard-Vessiot extension of
C({z}) for this equation. Since C({z}) C C((z)), we have that the
formal Galois group DGal(K/C((z))) is a subgroup of the convergent
Galois group DGal(K/C({z})). If z = 0 is a regular singular point then
these Galois groups are the same but in general the convergent group
is larger than the formal group. I will describe analytic objects that
measure the difference. The basic idea is the following. We have a formal
solution Y = ¢(z)xLe?(/?) for the differential equation. For each small
enough sector S at = 0 we can give the terms =¥ and e?(1/t) meaning
in an obvious way. The matrix ¢(z) is a little more problematic but
it has been shown that one can find a matrix ®s of functions, analytic
is S, “asymptotic” to ¢(x) and such that ®s(z)xLeQ(/t) satisfies the
differential equation. In overlapping sectors S§; and Ss the corresponding
&g, and ®s, may not agree but they will satisfy ®s, = @5, 512 for some
Stiz2 € GL,(C). The St; ; ranging over a suitable choice of small sectors
Sp together with the formal Galois group should generate a group that
is Zariski dense in the convergent Galois group. There are two (related)
problems with this idea. The first is what do we mean by asymptotic and
the second is how do we select the sectors and the ®, in some canonical
way? We shall first consider these questions for fairly general formal
series and then specialize to the situation where the series are entries
of matrices ¢(z) that arise in the formal solutions of linear differential
equations.

Asymptotics and Summability. In the 19** century, Poincaré proposed
the following notion of an asymptotic expansion.

Definition 1.4.12 Let f be analytic on a sector S = S(a, b, p) at x = 0.
The series ZTLZ“U cnx™ is an asymptotic expansion of f if VN > 0 and
every closed sector W C S there exists a constant C(N, W) such that

f@) = Y | SCW, W2V Vzew.

TL()S‘ILSN—I

A function f analytic on a sector can have at most one asymptotic
expansion on that sector and we write J(f) for this series if it exists. We
denote by A(S(a,b, p)) the set of functions analytic on S(a, b, p) having
asymptotic expansions on this sector. We define A(a, b) to be the direct
limit of the A(S(a, b, p)) over all p (here we say f1 € A(S(a,b,p1)) and
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fa € A(S(a,b, p2)) are equivalent if they agree on the intersection of the
sectors). If one thinks of a,b € S*, the unit circle, then one can see that
the sets A(a, b) form a sheaf on S'. We have the following facts (whose
proofs can be found in Chapters 7.1 and 7.2 of [5] or in [38]).

e A(a,b) is a differential C-algebra.

o A(S') =C({z}).

e (Borel-Ritt) For all (a,b) # S!, the map J : A(a,b) — C((z)) is
surjective.

Given a power series in C((z)) that satisfies a linear differential equa-
tion, one would like to say that it is the asymptotic expansion of an
analytic function that also satisfies the differential equation. Such a
statement is contained in the next result, originally due to Hukuhara
and Turrittin, with generalizations and further developments concern-
ing nonlinear equations due to Ramis and Sibuya (see Chapter 7.2 of [5]
for a proof and references).

Theorem 1.4.13 Let A € gl,,(C({z})), w € (C({z}))™ and v € (C((z)))"
such that

vV —Ab=w .

For any direction 6 € S there exist a,b, a < 0 < b and v € (A(a,b))"
such that J(v) =0 and

v —Av=w

In general, there may be many functions v satisfying the conclusion
of the theorem. To guarantee uniqueness we will refine the notion of
asymptotic expansion and require that this be valid on large enough
sectors. The refined notion of asymptotics is given by

Definition 1.4.14 (1) Let k be a positive real number, S an open sector.
A function f € A(S) with J(f) = 3,5, ¢z is Gevrey of order k if
for all closed W C &, JA > 0,¢ > 0 such that VN > 1, z e W, |z| <c¢
one has

f@ = Y caa”| < AN(NDE |2V

no<n<N -1

(One usually uses (1 + &) instead of (NY)% but this makes no differ-
ence.)
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(2) We denote by A%(S) the ring of all Gevrey functions of order k on
S and letAO%(S) ={f € AL(S) | J(f) =0}

The following is a useful criterion to determine if a function is in .49 (S).
k

Lemma 1.4.15 f € AS(S) if and only if ¥ closed W C S,3 A,B > 0
k
such that

|f(2)| < Aexp (=Blz|™*) Ve e W
Example 1.4.16 f(z) = e € A% (S), for S = S(—Z, %) but not
k
on a larger sector. This is a hint of what is to come.

Corresponding to the notion of a Gevrey function is the notion of a
Gevrey series.

Definition 1.4.17 ZnZn() cnx™ is a Gevrey series of order k if 3A > 0
such that ¥n > 0 |cp| < A™(n!)%.
(2) C((x)) L = Gevrey series of order k.

Note that if k£ < £ then C((z))1 C C((z))
can prove the following key facts:

L. Using these definitions one

¢ (Improved Borel-Ritt) If |b—a| < T, the map J : Ay (a,b) — C((z))
is surjective but not injective.

e (Watson’s Lemma) If [b — a| > %, the map J : Ai(a,b) — C((x))
injective but not surjective.

=

is

wl-

Watson’s lemma motivates the next definition.

Definition 1.4.18 (1) §j € C((z)) is k-summable in the direction d € S*
if there exists an f € Ar(d— §,d+ 3) with J(f) = ¢, o> .

(2) § € C((z)) is k-summable if it is k-summable in all but a finite
number of directions

A k-summable function has unique analytic “lifts” in many large sec-
tors (certainly enough to cover a deleted neighborhood of the origin). I
would like to say that the entries of the matrix (2)(.’13) appearing in the
formal solution of a linear differential equation are k-summable for some
k but regrettably this is not exactly true and the situation is more com-
plicated (each is a sum of k;-summable functions for several possible
k;). Before I describe what does happen, it is useful to have criteria for
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deciding if a series § € C((x)) is k-summable. Such criteria can be given
in terms of Borel and Laplace transforms.

Definition 1.4.19 The Formal Borel Transform By of order k:
By : C[[z]] — CI[¢]]
ny _ Cn n
Br(Xen™) = 3wy EyC

Note: If § = 3 cpz™ € C((x))
gence.

1 = B(§) has a nonzero radius of conver-

Example 1.4.20 B; (> (—1)"nlz"+1) = Z(—l)"%;%1 = log(1 + ()
Definition 1.4.21 The Laplace Transform Ly 4 of order k in the direc-
tion d: Let f satisfy | f(¢)] < Aexp(B|¢|*) along the ray rq from 0 to co
in direction d. Then

Lraf(@) = [ TOexs(-(MAE))
Note: L 40 Bi(z™) = 2™ and Ly 4 0 Bk (f) = f for f € C{{z}}.

Example 1.4.22 For any ray rq not equal to the negative real axis,
the function f(¢) = log(1l + ¢) has an analytic continuation along rq.
Furthermore, for such a ray, we have

£ralog(1 +O)a) = [ 1og(1+ Qe Fa(S) = [ e fuc
d x al+¢
Note that there are several slightly different definitions of the Borel and
Laplace transforms scattered in the literature but for our purposes these
differences do not affect the final results. I am following the definitions
in [38] and [5]. The following gives useful criteria for a Gevrey series of

order k to be k-summable (Chapter 3.1 of [38] or Chapter 7.6 of [5]).

Proposition 1.4.23 § € C[[z]]1 is k-summable in direction d

)

Bi(9) has an analytic continuation h in a full sector {¢ |0 < [¢| <
00, |arg¢ — d| < €} and has exponential growth of order < k at oo
in this sector (|h(¢)| < Aexp(B|¢|¥). In this case, f = Lxa(h) is its
k-sum.
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Example 1.4.24 Consider § = Y (—1)"nla"Tt, a power series of Gevrey
order 1 that is also a solution of the Euler equation. We have seen that
Q) =Bi(y) = (- )"gm log(1+¢) for |¢| < 1. As we have noted
in Example 1.4.22, this function can be continued outside the unit disk in
any direction other than along the negative real axis. On any ray except
this one, it has exponential growth of order at most 1 and its Laplace

transform is

wle) = £1,a008(1+O)a) = [ tog1 + e Ea() = [ oetac

We note that this function again satisfies the Euler equation. To see this
note that y(z) = Cer is a solution of x2y’ +y = 0 and so variation of
constants gives us that f(z) = [ e et 4 is a solution of :1:2y’ + Y=z
For convenience let d = 0 and define a new variable ¢ by 2 § = ;—— which
gives f(z) = [ d=0 TF Ce x d( Therefore, for any ray except the negative
real ams, we are able to canonically associate a function, analytic in
a large sector around this ray, with the divergent series Y (—1)"nlz"*1
and so this series is 1-summable. Furthermore these functions will again
satisfy the FEuler equation. This is again a hint for what is to come.

Linear Differential Equations and Summability. It has been known since
the early 20" Century that a formal series solution of an analytic dif-
ferential equation F(z,y,y’,...,4™) = 0 must be Gevrey of order k
for some k ([39]). Regrettably, even for linear equations, these formal
solutions need not be k summable (see [37]). Nonetheless, if § is a
vector of formal series that satisfy a linear differential equation it can
be written as a sum § = 31 + ... + 4 where each y; is k; summable
for some k;. This result is the culmination of the work of several au-
thors including Ramis, Malgrange, Martinet, Sibuya and Ecalle (see
[37], [40] and Chapter 7.8 of [5]). The k; that occur as well as the direc-
tions along which the g; are not summable can be seen from the normal
form of the differential equation. We need the following definitions. Let

= AY, A € gl (C({z})) and let ¥ = ¢(z ):1: eQ0/Y) be a formal
solution with ¥ = z and Q = diag(q1,...,qn),q € +C[}].

Definition 1.4.25 (1) The rational number k; = L (the degree of q; in 1)
is called a slope of Y' = AY.

(2) A Stokes direction d for a ¢; = cx™% + ... is a direction such that
Re(cx™%) =0, i.e., where e® changes behavior.
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(8) Let dy,do be consecutive Stokes directions. We say that (dq,dz2) is a
negative Stokes pair if Re(cz™") < 0 for arg(z) € (dy,ds).

(4) A singular direction is the bisector of a negative Stokes pair.

Example 1.4.26 For the Euler equation we have that v =1 and Q(z) =
diag(L,0). Therefore the slopes are {0,1}. The Stokes directions are
{3, 37"} The pair (5, %1) is a negative Stokes pair and so w is the only
singular direction.

With these definitions we can state

Theorem 1.4.27 (Multisummation Theorem) Let 1/2 < ky < ... <k,
be the slopes of Y' = AY and let Y € (C((x)))" satisfy this differential
equation. For all directions d that are not singular directions, there
ezist Y; € C((x)) such that Y=Yi+...+Y,, each Y; is k;-summable
in direction d and, for y;= the k;-sum of Y;, Yda =vy1 + ...+ yr satisfies
y = Ay.

The condition that 1/2 < k; is a needed technical assumption but, after
a suitable change of coordinates, one can always reduce to this case.
We shall refer to the element y, as above as the multisum of Y in the
direction d.

Stokes Matrices and the Convergent Differential Galois Group. We are
now in a position to describe the analytic elements which, together with
the formal Galois group, determine the analytic Galois group. Once
again, let us assume that we have a differential equation Y’/ = AY
with A € gl (C({z})) and assume this has a formal solution ¥ =
H(x)zl e/ with ¢(z) € GLn(C((z))). The matrix F = ¢(z) is a
formal solution of the n? x n? system

F
d— = AF — FAy (1.3)
dx

where Y/ = AgY is the normal form of Y/ = AY. We will want to
associate functions, analytic in sectors, to ¢(z) and therefore will apply
the Multisummation Theorem to equation 1.3 (and not to Y’ = AY).
One can show that the eigenvalues of equation (1.3) are of the form
¢i; — g; where the g¢;, ¢; are eigenvalues of Y’ = AY'.
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Let d be a singular direction of Y/ =
AY — YAp. Select dt and d~ nearby
so that the associated sectors overlap and
contain d. Let ¢*,¢~ be the associated
" multisums. We must have ¢gtzLe@1/t) =
¢~ xLeRU/ . St, for some Sty € GL,(C)
on the overlap of the regions (the shaded
area in the figure). The matrix Sty is in-
dependent of the choice of d* and d~.

Definition 1.4.28 The matrixz Sty is called a Stokes matrix in the

direction d.

Example 1.4.29 (Euler equation)
e Eigenvalues of Y' = AY —Y Ao: {1,0}
e Singular direction of Y/ = AY —YAp: d=m
can=( ) ) Fesmacyen
-% f
For d+ and d™ close to the negative real azis, we have

. 1 _< - 1 -<
f —/d+1+ce d¢ and f -[1_1+Ce dC.

_<
Since ft — f~ = 2mwi Resc=—_1 (%fz) = 27, we have

(—1;% (ﬁ)’)z(;}z (ﬁ)’)(é 27)

soSth((l) 2;”)

The following result is due to Ramis [41, 42, 43, 44]. Another proof
appears in the work of Loday-Richaud [45]. An exposition of this result

and its proof appears in Chapter 8 of [5].

Theorem 1.4.30 The convergent differential Galois group

DGal(K/C({z})) is the Zariski closure of the group generated by

(i) the formal differential Galois group DGal(K/C((x))), and
(ii) The collection of Stokes matrices {Stq} where d runs over the set
of singular directions of the polynomials {q; —q;}, gi,q; eigenval-

ues of Y = AY.
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Examples 1.4.31 (1) (Euler equation)
e The formal differential Galois group:

(5 1) 1e20

. 1 273
o Stokes matriz: ( 01 )

Therefore the convergent differential Galois group is
c d
{<0 1)|c¢0,d€C}.

(2) (Airy equation)
e The formal differential Galois group:

pe={( o 2 ) (L §) et

o The Stokes matrices:

1 * 1 0 1
Sto_( 0 1>’St:"sl‘<* 1)’5“:—?”( 0 1>

(see Ezample 8.15 of [22] for the calculation of the Stokes matri-
ces.)

Therefore the convergent differential Galois group is SLa(C)

We highly recommend the book [40] of Ramis, the papers of Loday-
Richaud [46, 37] and the papers of Varadarajan [47, 48] for further in-
troductions to this analytic aspect of linear differential equations. One
can find references to the original papers in these works as well as in [5].

1.5 Algorithms

In this section we shall consider the question: Can we compute differ-
ential Galois groups and their properties? We shall not give a complete
algorithm to determine the Galois groups although one exists - see [21].
This general algorithm has not been implemented at present and in its
present form seems not very efficient. We will rather give a flavor of the
various techniques that are presently implemented and used.

Categories motivate algorithms. We will show how results in a cat-
egorical setting concerning representations of groups lead to algorithms
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to determine Galois groups. We begin with an example from the Galois
theory of polynomials.

Example 1.5.1 Let
P(Y)=Y*+bY +c=0€ Q[Y].

The usual Galois group G of this equation is a subgroup of the full per-
mutation group Sz on 3 elements. We will describe how to compute G.
IfFP(Y)= (Y +a)(Y2+B8Y +7),a,8,v € Q, then G is the Galois group
of Y2 + BY + 1+, which we assume we know how to compute. Therefore
we will assume that P(Y') is irreducible over Q. This implies that G acts
transitively on the roots {p1,p2, ps} of P. From group theory we know
that the only transitive subgroups of Ss are As, the alternating group on
3 elements, and Sz3. To decide which we have, consider the following
associated polynomial

72 4+ 40> + 276 = (Z+6)(Z-06) 6=(r1 —r2)(ra —713)(r3 —T1).

One then has that G = Az if Z2 +4b% 4+ 27¢2 factors over Q and G = S3
if Z2 4 4b3 + 27¢? irreducible over Q.

In the above example we determined the Galois group by considering
factorization properties of the polynomial and associated polynomials.
Why does this work?

To answer this question, let us consider a square-free polynomial f(Y') €
Q[Y] with roots 71, ..., € Q, the algebraic closure of Q. Let G be the
Galois group of f over Q. The group G acts as a group of permuta-
tions on the set S = {ry,...,r,}. We have that G acts transitively
on S if and only if the polynomial f is irreducible. More generally,

G leaves a subset {r;,,...,r;, } invariant if and only if the polynomial
g(Y) = H;zl(Y —1;,) € Q[Y]. Therefore the orbits of G in the set S

correspond to irreducible factors of f. In fact, for any h € Q[Y] hav-
ing all its roots in the splitting field of f, G-orbits in the set of roots
correspond to irreducible factors of h. In the above example, we were
able to distinguish between groups because they have different orbits in
certain “well-selected” sets and we were able to see this phenomenon via
factorization properties of associated polynomials. The key is that, in
general,
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one can distinguish between finite groups by looking at the sets on
which they act.

This strange looking statement can be formalized in the following way
(see Appendix B1 of [5] for details). For any finite set, let Perm(S) be
the group of permutations of S. One constructs a category Permg of
G-sets whose objects are pairs (5, p), where p : G — Perm(S) is the
map defining an action of G on S. The morphisms of this category are
just maps between G-sets that commute with the action of G. One has
the forgetful functor w : Permg — Sets which takes (S, p) to S. One
then has the formalization of the above statement as: one can recover
the group from the pair (Permg,w). A consequence of this is that given
two groups H C G there is a set S on which G (and therefore H) acts so
that the orbit structures with respect to these two groups are different.

These facts lead to the following strategy to compute Galois groups of a
polynomial f € Q[X]. For each pair of groups H C G C S,, we construct
a polynomial fg ¢ € Q[X] whose roots can be expressed in terms of the
roots of f and such that H and G can be distinguished by their orbit
structures on the roots of fu,¢ (by the above facts, we know that there
is a set that distinguishes H from G and one can show that this set can
be constructed from the roots of f). The factorization properties of fr g
will then distinguish H from G. This is what was done in Example 1.5.1.

To generalize the above ideas to calculating differential Galois groups of
linear differential equations, we must first see what determines a linear
algebraic group. In fact, just as finite groups are determined by their
permutation representations, linear algebraic groups are determined by
their linear representations. To make this more precise, let G be a linear
group algebraic group defined over an algebraically closed field C. I
will denote by Reps the category of linear representations of G. The
objects of this category are pairs (V, p) where V is a finite dimensional
vector space over C and p: G — GL, (V) is a representation of G. The
morphisms m : (V1, p1) — (Vz, p2) are linear maps m : V; — V4 such that
mop; = pgom. One can define subobjects, quotients, duals, direct sums
and tensor products in obvious ways (see Appendix B2 and B3 of [5] for
details). One again has a forgetful functor w : Rep; — Vecte (where
Vectc is the category of vector spaces over C) given by w(V,p) = V. In
analogy to the finite group case, we have Tannaka’s Theorem, that says
that we can recover G from the pair (Repg,w).
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Let 7 be a category with a notion of quotients, duals, direct sums,
tensor products and a functor @ : 7 — Vecte. An example of such a
category is the category of differential modules D over a differential field
k with algebraically closed constants and (M) = ker(9, K® M) (see the
discussion following Definition 1.2.13) where K is a differential field large
enough to contain solutions of the differential equations corresponding
to the modules in D. One can give axioms that guarantee that @(7) “="
w(Repg) for some linear algebraic group G (see [49], [50] or Appendix
B3 of [5]). Such a pair (7,) is called a neutral tannakian category.
Applying this to a subcategory of D, one has:

Theorem 1.5.2 Let (k,0) be a differential field with algebraically closed
constants, let Y' = AY be a linear differential equation over (k,0), let
My be the associated differential module and K the associated Picard-
Vessiot extension. Let T = {{Ma}} be the smallest subcategory of D
containing M4 and closed under the operations of taking submodules,
quotients, duals, direct sums, and tensor products. For N € {{Ma}},
let &(N) = ker(0, N ® K).

Then (T,®) is a neutral tannakian category and the image of @ is the
category of vector spaces on which DGal(K/k) acts.

This theorem and Tannaka’s Theorem have the following implications:

e One can construct all representations of DGal(K/k) by:

— using the constructions of linear algebra (submodules, quotients,
duals, direct sums, tensor products) on M4, and

— taking the solution spaces of the corresponding differential equa-
tions.

e DGal(K/k) is determined by knowing which subspaces of these solu-
tion spaces are DGal(K/k)-invariant.

At first glance, it seems that one would need to consider an infinite num-
ber of differential modules but in many cases, it is enough to consider
only a finite number of modules constructed from M4. Regrettably,
there are groups (for example, any group of the form C* & ... ® C*)
for which one needs an infinite number of representations to distinguish
it from other groups. Nonetheless, there are many groups where a fi-
nite number of representations suffice. Furthermore, Proposition 1.3.28
states that the DGal-invariant subspaces of the solution space of a differ-
ential module N correspond to factors of the associated scalar equation
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Ln(Y) = 0. Therefore, in many cases, one can give criteria for a dif-
ferential equation to have a given group as Galois group in terms of
factorization properties of certain associated differential operators. We
shall give examples for second order equations. We begin with a defini-
tion.

Let k be a differential field with algebraically closed constants C, let
L = 9% — s € k[0], and let K be the Picard-Vessiot extension corre-
sponding to L(Y) = 0. Let {y1,y2} be a basis for the solution space V'
of L(Y) =0 in K and let V;, = C —span of {y7, 4" 'y2,...,y5}. One
can see that V,, is independent of the selected basis of V' and that it
is invariant under the action of DGal(K/k). As in the proof of Propo-
sition 1.3.28 one can show that this implies that V,, is precisely the
solution space of a scalar linear differential equation over k.

Definition 1.5.3 The m!* symmetric power LO™ of L is the monic
operator whose solution space is Vi, .

One has that the order of LO™ is m + 1. To see this it is enough to
show that the 7" "'y, 0 < i < m are linearly independent over C. Since
any homogeneous polynomial in two variables factors over C, if we had
0 = Sy 'y = [(aiy1 + biyz), then y; and yo would be linearly
dependent over C. One can calculate L®™ by starting with y™ and
formally differentiating it m times. One uses the relation y” — sy = 0
to replace y9), j > 1 with combinations of y and 3’. One then has
m+2 expressions y™, (y™)’, ..., (™)™ in the m+1 “indeterminates”
¥y (y')!, 0 < i < m. These must be linearly dependent and one can
find a dependence (y™)™+Y) 4 b, (y™)(™ + ... 4+ bo(y™) = 0. One can
show that LO™ = g™+! 4 b,,0™ + ...+ by (see Chapter 2.3 of [5]).

Example 1.5.4 m = 2:
2 2

y- = Y
(y2)/ = 2yy’ ®2 7 ’ ’
= —4sy’ —2
(y2)// _ 2(yl)2 + 281/2 = L%y =y sY sy
(y2)/// — 83yy' + 25’1/2

The vector spaces V,, correspond to representations of DGal(K/k) on
the m*" symmetric power of V and are well understood for many groups
[51] (the m!* symmetric power of a vector space is the vector space with
a basis formed by the monomials of degree m in a basis of V). Using
representation theory, one can show:
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Proposition 1.5.5 Let L(y) = y”—sy and let G = DGal(K/k). Assume
L and L®? are irreducible.

o If L3 is reducible then G/ + 1~ Ay.

o If L®3 s reducible and L©* is irreducible then G/ =+ I~ S.

o If L®* is reducible, and LO® is irreducible, then = G/t~ As.
o If LO%s irreducible then G =~ SLy(C).

In order to implement these criteria, one needs good algorithms to fac-
tor linear operators. Such algorithms exist and I refer to Chapter 4.2
of [5] for descriptions of some algorithms that factor linear operators as
well as further references to the extensive literature. The calculation of
symmetric powers and factorization of operators has been implemented
in MAPLE in the DEtools package.

One can develop similar criteria for higher order operators. Given a
differential operator L of order n with {y1,...,y,} being a basis of the
solution space V in some Picard-Vessiot extension, one can consider the
C-space V,,, of homogeneous polynomials of degree m in the y;. This
m+n—1
n—1
that is strictly smaller and so is not isomorphic to the m!* symmetric
power of V (although it is isomorphic to a quotient). This complicates
matters but this situation can be dealt with by casting things directly in
terms of differential modules, forming the symmetric powers of differen-
tial modules and developing algorithms to find submodules of differential
modules. This is explained in Chapter 4.2 of [5]. Examples of criteria
for third order equations are given in Chapter 4.3.5 of [5] where further
references are given as well.

space has dimension at most ( ) but may have dimension

Solving L(y) = 0 in terms of exponentials, integrals and
algebraics. I shall give a formal definition that captures the meaning
of this term.

Definition 1.5.6 Let k be a differential field, L € k[0], and K be the
associated Picard-Vessiot extension.
1) A liouvillian tower over k is a tower of differential fields k = Ky C
... C Ky with K C Ky, and, for each 1,0 <i <m, K11 = K;(t;), with
e t; algebraic over K;, or
° t; eK;, e, t;= fui,'ui € K;, or
o tg/ti € Ki, e, t; = el Yeou; € K;
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2) An element of a liouvillian tower is said to be liouvillian over k.

3) L(y) = 0 is solvable in terms of liouvillian functions if the associated
PV-extension K lies in a liouvillian tower over k.

Picard and Vessiot stated the following Galois theoretic criteria and this
was given a formal modern proof by Kolchin [52, 3].

Theorem 1.5.7 Let k, L, and K be as above. L(y) = 0 is solvable in
terms of liowvillian functions if and only if the identity component (in
the Zariski topology) of DGal(K/k) is solvable.

Recall that a group G is solvable if there exists a tower of subgroups
G =Gy DGy D... > Gy = {e} such that G;4; is normal in G; and
G;41/G; is abelian. This above theorem depends on the

Theorem 1.5.8 (Lie-Kolchin Theorem) Let C be an algebraically closed
field. A Zariski connected solvable group G C GL,(C) is conjugate to a
group of triangular matrices. In particular, G leaves a one dimensional
subspace invariant.

I shall show how the Lie-Kolchin Theorem can be strengthened resulting
in a strengthened version of Theorem 1.5.7 that leads to an algorithm
to decide if a given linear differential equation (over C(z)) can be solved
in terms of liouvillian functions. I begin with

Proposition 1.5.9 Let k be a differential field, L € k[9], K the corre-
sponding Picard-Vessiot extensions and G the differential Galois group
of K over k. The following are equivalent:

(i) L(y) =0 has a liowvillian solution # 0.
(ii) G has a subgroup H,|G : H| = m < oo such that H leaves a one
dimensional subspace invariant.

(iii) L(y) = 0 has a solution z # 0 such that 2’ /z is algebraic over k
of degree < m.

Proof (Outline; see Chapter 4.3 of [5]) (iil) =(i): Clear.

(i) =(ii): One can reduce this to the case where all solutions are liou-
villian. In this case, the Lie-Kolchin Theorem implies that the identity
component G° of G leaves a one dimensional subspace invariant.

(i) =(iii): Let V = Soln(L) and v € V span an H-invariant line. We
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then have that Vo € H,3c, € Cj such that o(v) = c¢y,v. This im-

plies that Vo € H, a(%) = () _ Therefore, the Fundamental

cv v
Theorem implies that % € E = fixed field of H. One can show that
[E:k]=|G:Hl=mso % is algebraic over k of degree at most m. [
In order to use this result, one needs a bound on the integer m that can
appear in (ii) and (iii) above. This is supplied by the following group
theoretic result (see Chapter 4.3.1 of [5] for references).

Lemma 1.5.10 There ezists a function I(n) such that if G C GL,(C),
H C G satisfies

(i) |G: H| < o0 and

(ii) H leaves a one dimension subspace invariant

then there ezists a subgroup H C G such that

(i) |G: H| < I(n) and
(if) H leaves a one dimensional subspace invariant.

In general we know that I(n) < n2"*+2_ For small values of n we have
exact values, (e.g., I(2) = 12, I(3) = 360). This clearly allows us to
deduce the following corollary to Proposition 1.5.9.

Corollary 1.5.11 Let k, L, K be as in Proposition 1.5.9 with the order
of L equal to n. The following are equivalent

(i) L(y) = 0 has a liowvillian solution # 0.
(il) G has a subgroup H,|G : H| < I(n) such that H leaves a one
dimensional subspace invariant.
(i) L(y) = 0 has a solution z # 0 such that 2’/z is algebraic /k of
deg < I(n).

This last result leads to several algorithms to decide if a differential
equation L(y) = 0, L € C(x)[9],C a finitely generated subfield of C,
has a liouvillian solution. The one presented in [53] (containing ideas
going back to [54]) searches for a putative minimal polynomial P(u) =
aAmU™ + @ 1u™ L+ ...+ ag, a; € C[z] of an element u = 2’/z where 2
is a solution of L(y) = 0 and m < I(n). This algorithm shows how the
degrees of the a; in x can be bounded in terms of information calculated
at each singular point of L. Once one has degree bounds, the actual
coefficients a; can be shown to satisfy a system of polynomial equations
and one can (in theory) use various techniques (e.g., Grobner bases) to
solve these. Many improvements and new ideas have been given since
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then (see Chapter 4 of [5]). We shall present criteria that form the basis
of one method, describe what one needs to do to use this in general and
give details for finding liouvillian solutions of second order differential
equations.

Proposition 1.5.12 (1) Let G be a subgroup of GL,,. There exists a
subgroup H C G,|G : H| < I(n) with H leaving a one dimensional space
invariant if and only if G permutes a set of at most I(n) one dimensional
subspaces.

(2) Let k,L,K,G be as in Proposition 1.5.9 with the order of L equal

ton. Then L(y) = 0 has a liowvillian solution if and only if G C GL,
permutes a set of at most I(n) one dimensional subspaces.

Proof (1) Let ¢ be a one dimensional space left invariant by H. The
orbit of £ under the action of G has dimension at most |G : H|. Now,
let £ be a one dimensional space whose orbit under G is at most I(n)
and let H be the stabilizer of £. We then have |G : H| < I(n). (2) is an
immediate consequence of (1) and the previous proposition. ]

To apply this result, we need the following definition:

Definition 1.5.13 Let V' be a vector space of dimension n and t > 1
be an integer. The t*" symmetric power Sym'(V)of V is the quotient of
the t — fold tensor product V®t by the subspace generated by elements
VI® ... QU —Ur(1) ® ... & VUr(p), for all v; €V and m a permutation.

We denote by vivs - - - v; the image of v1®. . . vy in Symt(V). Ifey,... e,
is a basis of V and 1 <t < n, then {e; e;, - €5, | i1 <i2 < ... < it}
is a basis of Sym’(V). Furthermore, if G C GL,(V), then G acts on
Sym‘(V) as well via the formula o(vy - v;) = o(v1) -+ - o(v),0 € G.

Definition 1.5.14 (1) An element w € Sym‘(V) is decomposable if
w=w; - -wy for some w; € V.

(2) A one dimensional subspace £ C Sym'(V) is decomposable if ¢ is
spanned by a decomposable vector.

We note that if we fix a basis {e1,...,e,} of V then an element

E Ciy...i; €4y * " " €4y

11 <... <1t
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is decomposable if and only if the ¢;, . ;, satisfy a system of equations
called the Brill equations ([55], p. 120,140). Using these definitions, it is
not hard to show

Proposition 1.5.15 (1) A group G C GL,(V) permutes a set of t
one dimensional subspaces if and only if G leaves a decomposable one
dimensional subspace of Sym® (V') invariant.

(2) Let k,L,K,G be as in Proposition 1.5.9 with the order of L equal to
n. Then L(y) = 0 has a liouvillian solution if and only if for some t <
I(n) G leaves invariant a one dimensional subspace of Sym‘(Soln(L)).

Note that Sym‘(V) is constructed using tensor products and quotients.
When we apply this construction to differential modules, we get

Definition 1.5.16 Let k be a differential field and M a differential
module over k. The t*" symmetric power Sym®(M)of M is the quotient
of the t-fold tensor product M®t by the k-subspace generated by elements
V®... QU — Up(1) ® ... ®VUn(y), for all v; € V and 7 a permutation
(note that this subspace is a differential submodule as well).

At the end of Section 1.2, I defined the solution space of a k-differential
module M in a differential field K D k to be Solng (M) = ker(9, K ®
M). From our discussion of tannakian categories, we have that
Solng (Sym‘(M)) = Sym‘(Solng(M)). This latter fact suggests the
following algorithm to decide if a linear differential equation has a li-
ouvillian solution (we continue to work with scalar equations although
everything generalizes easily to systems). Let M be the differential
module associated to the equation L(y) = 0. For each t < I(n)

e Calculate N; = Sym‘(M) and find all one dimensional submodules.
e Decide if any of these is decomposable as a subspace of N;.

The tannakian formalism implies that a one dimensional submodule of
N, is decomposable if and only if its solution space is a decomposable
G-invariant subspace of Sym*(Solng (My)).

Much work has been done on developing algorithms for these two steps.The
problem of finding one dimensional submodules of a differential module
was essentially solved in the 19* and early 20** Centuries (albeit in
a different language). More recently work of Barkatou, Bronstein, van
Hoeij, Li, Weil, Wu, Zhang and others has produced good algorithms
to solve this problem (see [56], [57], [58] and Chapter 4.3.2 of [5] for
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references). As noted above, the second problem can be solved (in prin-
ciple)using the Brill equations (see [59] and Chapter 4.3.2 of [5] for a
fuller discussion). Finally, one can modify the above to produce the li-
ouvillian solutions as well.

Before I explicate these ideas further in the context of second order equa-
tions, I will say a few words concerning finding invariant one dimensional
subspaces of solution spaces of linear scalar equations.

Proposition 1.5.17 Let k be a differential field with algebraically closed
constants C. L € k[0], K the Picard-Vessiot extension of k for L(Y) =0
and G the differential Galois group of K over k. An element z in the
solution space V of L(Y) = 0 spans a one dimensional G-invariant
subspace if and only if u = 2'/z is left fited by G. In this case, O — u is
a right divisor of L. Conversely if 0 — u,u € k, is a right divisor of L,
then there exists a solution z € K such that 2'/z = u, in which case, z
spans a G-invariant space.

Proof This follows from Proposition 1.3.28 and its proof applied to first
order factors of L. O

Therefore, to find one dimensional G-invariant subspaces of the solution
space of L(Y) = 0, we need to be able to find elements u € k such that
z = eJ ¥ satisfies L(z) = 0. This is discussed in detail in Chapter 4.1
of [5] and I will give a taste of the idea behind a method to do this for
L € C(z) assuming L has only regular singular points.

Let u € C(x) satisfy L(e/“) = 0 and let z = a be a pole of u. The
assumption that z¢ is at worst a regular singular point implies that e/ *
is dominated by a power of (x — ) near a. We must therefore have that
u has a pole of order at most 1 at = xo and so z = e/ * = (z — a)%h(x)
where a € C and h is analytic near a € C. To determine a, we write

bpn_ b
———5—) + hot)Y® D4 4 (—2 4 hot)Y.

L(Y):Y(n)+((:c—a (zr—a)

Substituting ¥ = (z — a)%co + ci(z — @) + h.o.t.) and setting the
coefficient of (z — @)*™™ equal to zero, we have
colala—1)...(a—(n—1))+bp—1(a(a—1)...(a—(n—2))+...4+ b)) =0
or

ala—1)...(a=(n—=1))+bp-1(ala—1)...(a—=(n—=2))+...+ b =0



Galois Theory of Linear Differential Equations 49

This latter equation is called the indicial equation at *x = « and its
roots are called the exponents at a. If « is an ordinary point, then
bp1=...=by=0s0a€ {0,...,n—1}. One can also define exponents
at co. We therefore have that

y= II (z — ;)" P()

a,= finite sing. pt.

where the a; are exponents at a; and — Y a; — deg P is an exponent at
0o. The a; and the degree of P are therefore determined up to a finite
set of choices. Note that P is a solution of L(Y) = [J(z—a;)~* L([I(z—
a;)*Y). Finding polynomial solutions of L(Y') = 0 of a fixed degree can
be done by substituting a polynomial of that degree with undetermined
coefficients and equating powers of x to reduce this to a problem in lin-
ear algebra.

Liouvillian Solutions of Second Order Equations. The method
outlined above can be simplified for second order equations L(Y) =
Y” — sY because of several facts that we summarize below (see Chapter
4.3.4 of [5]). The resulting algorithm is essentially the algorithm pre-
sented by Kovacic in [60] but put in the context of the general algorithm
mentioned above. Kovacic’s algorithm predated and motivated much of

the work on liouvillian solutions of general linear differential equation
presented above.

o It can be shown that the fact that no Y’ term appears implies that the
differential Galois group must be a subgroup of SLy (Exercise 1.35.5,
p. 27 [5)).

e An examination of the algebraic subgroups of SLy implies that SLo
has no subgroup of finite index leaving a one dimensional subspace
invariant and any proper algebraic subgroup of SLy has a subgroup of
index 1,2,4,6, or 12 that leaves a one dimensional subspace invariant
(c.f., [60]).

e As shown in the paragraph following Definition 1.5.3, the dimen-
sion of the solution space of L®! is the same as the dimension of
Sym*(Soln(L)) and so these two spaces are the same.

e Any element z = Z;O yi 'yt € Sym'(Soln(L)) can be written as a
product []i_o(ciyr + diy2) and so all elements of Sym®(Soln(L)) are
decomposable.

Combining these facts with the previous results we have
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L(y) = 0 has a nonzero liouvillian solution

)

The differential Galois group G permutes 1,2,4,6 or 12 one
dimensional subspaces in Sol(L)

)

For t =1,2,4,6, or 12, G leaves invariant a line in Sol(L@t)

For t = 1,2,4,6, or 12, L®? has a solution z such that u = 2’/z € k

So, to check if Y” — sY = 0 has a nonzero liouvillian solution (and
therefore, by variation of parameters, only liouvillian solutions), one
needs to check this last condition.

Example 1.5.18

LY)=Y" + 32—z +1)

——Y
16(x — 1)2z2

This is an equation with only reqular singular points. One can show that
L(Y) = 0 has no nonzero solutions z with z'/z € C(z). The second
symmetric power is

(x2—x+1)y, (223 —32% + 5z - 2)
22 (z —1)° o3 (x —1)°
The singular points of this equation are at 0,1 and oco. The exponents
there are
. 13
At0: {1, 33
At1: {1, 2

LO%(Y)=Y" 4 3/4

~3/8

}
32}
Atoo: {-1,-3,-3}
For Y = z%(z — 1) P(x), try ap = 3,a1 = 1, degP = 0. One sces
that Y = 2% (z — 1) is a solution of LO2(y) = 0. Therefore L(Y) = 0 is
solvable in terms of liouvillian functions.

For second order equations one can also easily see how to modify the
above to find liouvillian solutions when they exist. Assume that one has
found a nonzero element u € k such that LO&™(Y) = 0 has a solution z
with 2’/z = u. We know that

Z=y1""'ym7 yla'--,ynLESOln(L).

Since o(z) € C - z for all ¢ € G, we have that for any o € Gal(L),
there exists a permutation m and constants ¢; such that o(y;) = ¢i¥n()-



Galois Theory of Linear Differential Equations 51

Therefore, for v; = %f and o € G we have 0(v;) = Vr(;), i-€., G permutes
the v;. Let

- IR — ag
PY)=]J(Y —v) =Y™ +am Y™ +’;—!Ym 2+...+ﬁ.
i=1
The above reasoning implies that the a; € k and
/ /
Am—1 = —(v1+...+vm)=—(yﬂ+...+y—m)
W Ym
_ ey
Y1 Ym z
The remaining a; can be calculated from a,,—; = —u using the following
fact from [61], [60] and [62] (see also Chapter 4.3.4 of [5]).
Lemma 1.5.19 Using the notation above, we have
i1 = —a; — Qm-ia; — (m —1)(i + 1)sa;y1, i=m—1,...,0

where a_, = 0.

In particular we can find a nonzero polynomial satisfied by y’/y for
some nonzero solution of L(y) = 0. This gives a liouvillian solution and
variation of parameters yields another.

Example 1.5.20 We continue with the ezample

3z -z +1)

LY)=Y"
) * 16(x — 1)222

Y

We have that y = x%(z — 1) is a soln of LO?(Y) = 0. Let

o = y (1 n 1 )= 3r—1
YTy e T -1 T T 2z(z—1)
then if v is a oot of
_ 2 _
P(Y) = 2 3z—1 92° — T +1

S 2r(x—1)" ' 16z2(x — 1)2
we have y = el ¥ satisfies L(y) = 0. This yields

Vr—z2\/1+Vz andvz —22\/1 -z

as solutions. DGal= D4 = symmetries of a square.
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Another approach to second order linear differential equations was dis-
covered by Felix Klein. It has been put in modern terms by Dwork and
Baldassari and made more effective recently by van Hoeij and Weil (see
[63] for references).

Solving in Terms of Lower Order Equations. Another way of defin-
ing the notion of “solving in terms of liouvillian functions” is to say that
a linear differential equation can be solved in terms of solutions of first
order equations Y’ 4+ aY = b and algebraic functions. With this in mind
it is natural to make the following definition.

Definition 1.5.21 Let k be a differential field, L € k[0] and K the
associated Picard-Vessiot extension. The equation L(Y) = 0 is solvable
in terms of lower order linear equations if there exists a tower k =
Ky c Ky C ... C K,, with K C K., and for each 1,0 < i < m,
K1 = K, <t; > (Kiy1 is generated as a differential field by t; and
K;), with

o t; algebraic over K;, or
e L;(t;) =b; for some L; € K;[0] ord(L;) < ord(L), b; € K;

One has the following characterization of this property in terms of the
differential Galois group.

Theorem 1.5.22 ([64]) Let k,L, K be as above with ord(L) = n. The
equation L(Y) = 0 is not solvable in terms of lower order linear equations
if and only if the lie algebra of DGal(K/k) is simple and has no faithful
representations of dimension less than n.

If ord(L) = 3, then an algorithm to determine if this equation is solv-
able in terms of lower order linear equations is given in [65]. Refinements
of this algorithm and extensions to higher order L are given in [66], [67],
[68], [69], [70].

1.6 Inverse Problems
In this section we consider the following problem:

Gwen a differential field k, characterize those linear differential alge-
braic groups that appear as differential Galois groups of Picard-Vessiot
extensions over k.

We begin with considering the inverse problem over fields of constants.
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Differential Galois groups over C. Let L € C[9)] be a linear differen-
tial operator with constant coefficients. All solutions of L(Y) =0, L €
C|0] are of the form ), P;(x)e** where P;(z) € Clz], a; € C,2’ = 1.
This implies that the associated Picard-Vessiot K is a subfield of a field
E = C(z,e**,...,e*"). One can show that DGal(E/k) = (C,+) x
((C*,-) x ... x (€*,+)). The group DGal(K/C) is a quotient of this
latter group and one can show that it therefore must be of the form
(C,+)* x (C*,-)’,a=0,1, be N.

One can furthermore characterize in purely group theoretic terms the
groups that appear as differential Galois groups over C. Note that

(<c,+):{(é ‘1‘) laeC}

and that all these elements are unipotent matrices (i.e., (A —I)™ =0
for some m # 0). This motivates the following definition.

Definition 1.6.1 If G is a linear differential algebraic group, the unipo-
tent radical R, of G is the largest normal subgroup of G all of whose
elements are unipotent.

Note that for a group of the form G = C x (C* x ... x C*) we have
that R,(G) = C. Using facts about linear algebraic groups (see {71] or
[23]) one can characterize those linear algebraic groups that appear as
differential Galois groups over an algebraically closed field of constants
C as

Proposition 1.6.2 A linear algebraic group G is a differential Galois
group of a Picard-Vessiot extension of (C,9),0c =Ve € C if and only if
G is connected, abelian and R,(G) < 1.

All of the above holds equally well for any algebraically closed field C.

Differential Galois groups over C(z),z’ = 1. The inverse problem
for this field was first solved by C. and M. Tretkoff, who showed

Theorem 1.6.3 [72] Any linear algebraic group is a differential Galois
group of a Picard-Vessiot extension of C(z).

Their proof (which I will outline below) depends on the solution of
Hilbert’s 21°¢ Problem. This problem has a weak and strong form. Let
S ={a1,...,am,0} C S? ag € S? —S and p : ™ (S? — S,a0) —
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GL,,(C) be a homomorphism.
Weak Form Does there exist A € gl,,(C(z)) such that

e Y/ = AY has only regular singular points, and
e The monodromy representation of Y’ = AY is p.

Strong Form Do there exist A; € GL,(C) such that the monodromy
representation of
Al + Am

rT—ar T —an

)Y

is p.

We know that a differential equation Y’/ = AY that has a regular singular
point is locally equivalent to one with a simple pole. The strong form of
the problem insists that we find an equation that is globally equivalent to
one with only simple poles. A solution of the strong form of the problem
of course yields a solution of the weak form. Many special cases of the
strong form were solved before a counterexample to the general case
was found by Bolibruch (see [73], [74] or Chapters 5 and 6 of [5] for
a history and exposition of results and [75] for more recent work and
generalizations).

(i) Let 1, ...,7m be generators of 71 (52— S, ap), each enclosing just
one «;. If some p(v;) is diagonalizable, then the answer is yes.
(Plemelj)

(ii) If all p(+;) are sufficiently close to I, the answer is yes. (Lappo-
Danilevsky)

(iii) If n = 2, the answer is yes. (Dekkers)
(iv) If p is irreducible, the answer is yes. (Kostov, Bolibruch)

(v) Counterexample for n = 3, |S| = 4 and complete characterization
for n = 3,4 (Bolibruch, Gladyshev)

In a sense, the positive answer to the weak form follows from Plemelj’s
result above - one just needs to add an additional singular point a1
and let ,,41 be the identity matrix. A modern approach to give a pos-
itive answer to the weak form was given by Rohrl and later Deligne (see
[15]). We now turn to

Proof of Theorem 1.6.3 (outline, see [72] of Chapter 5.2 or [5] for de-
tails) Let G be a linear algebraic group. One can show that there ex-
ist g1,...,9m € G that generate a Zariski dense subgroup H. Select
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points S = {ai,...am} C S? and define p : m1(S? — S,a0) — H via
p(7v:;) = g;. Using the solution of the weak form of Hilbert’s 21°¢, there
exist A € gl (C(x)) such that Y’ = AY has regular singular points and
monodromy group H.Schlesinger’s Theorem, Theorem 1.3.27, implies
that the differential Galois group of this equation is the Zariski closure
of H. O

The above result leads to the following two questions:

e What is the minimum number of singular points (not necessarily reg-
ular singular points) that a linear differential system must have to
realize a given group as its Galois group?

e Can we realize all linear algebraic groups as differential Galois groups
over C(z),z' = 1 where C is an arbitrary algebraically closed field?

To answer the first question, we first will consider

Differential Galois groups over C({z}). To characterize which groups
occur as differential Galois groups over this field, we need the following
definitions.

Definition 1.6.4 Let C be an algebraically closed field.

(1) A torus is a linear algebraic group isomorphic to (C*,-)" for some
r.

(2) If G is a linear algebraic group then we define L(G) to be the group
generated by all tori in G. This is a normal, Zariski closed subgroup of
G (see [76] and Chapter 11.3 of [5]).

Examples 1.6.5 (1) If G is reductive and connected (e.g., tori, GL,,SL, ),
then L(G) = G (A group G is reductive if R, (G) = {I}).

(2) If G=(C,+)",r > 2, then L(G) = {I}.
Ramis [76] showed the following (see also Chapter 11.4 of [5]).

Theorem 1.6.6 A linear algebraic group G is a differential Galois group
of a Picard-Vessiot extension of C({z}) if and only if G/L(G) is the
Zariski closure of a cyclic group.

Any linear algebraic group G with G/G° cyclic and G reductive satisfies
these criteria while G = (C, +)",r > 2 does not. Ramis showed that his
characterization of local Galois groups in terms of formal monodromy,
exponential torus and Stokes matrices yields a group of this type and
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conversely any such group can be realized as a local Galois group. Ramis
was furthermore able to use analytic patching techniques to get a global
version of this result.

Theorem 1.6.7 A linear algebraic group G is a differential Galois group
of a Picard-Vessiot extension of C(x) with at most r — 1 regular singular
points and one (possibly) irreqular singular point if and only if G/L(G)
is the Zariski closure of a group generated by r — 1 elements.

Examples 1.6.8 (1) We once again have that any linear algebraic group
1s a differential Galois group over C(x) since such a group satisfies the
above criteria for some r.

(2) SL,, can be realized as a differential Galois group of a linear differ-
ential equation over C(x) with only one singular point.

(3) One needs r singular points to realize the group (C,+)""! as a dif-
ferential Galois group over C(z).

Differential Galois groups over C(z), C' an algebraically closed
field. The proofs of the above results depend on analytic techniques over
C that do not necessarily apply to general algebraically closed fields C of
characteristic zero. The paper [77] examines the question of the existence
of “transfer principles” and shows that for certain groups G, the exis-
tence of an equation over C(z) having differential Galois group G over
C(zx) implies the existence of an equation over C(z) having differential
Galois group G over C(z) but these results do not apply to all groups.
Algebraic proofs for various groups over C(z) (in fact over any differen-
tial field finitely generated over its algebraically closed field of constants)
have been given over the years by Bialynicki-Birula (nilpotent groups),
Kovacic (solvable groups), Mitschi/Singer(connected groups) (see [78]
for references). Finally, Hartmann [79] showed that any linear alge-
braic group can be realized over C(z) (see also [80]). An exciting recent
development is the announcement of a new proof by Harbater and Hart-
mann [81, 82] of this fact based on a generalization of algebraic patching
techniques. I will give two examples of a constructive technique (from
[78]) that allows one to produce explicit equations for connected linear
algebraic groups. This technique is based on (see Proposition 1.31 of

[5])

Proposition 1.6.9 Let Y' = AY be a differential equation over a dif-
ferential field k with algebraically closed constants C. Let G, H be linear
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algebraic subgroups of GL,,(C) with lie algebras G, H. Assume G is con-
nected.

1) Let Y' = AY is a differential equation with A € G Q¢ k and assume
that G is connected. Then the differential Galois group of this equation
1s conjugate to a subgroup of G.

(2) Assume k = C(x), that A € G ®c C(x) and that the differential
Galois group of Y' = AY is H C G, where H is assumed to be con-
nected. Then there exists B € G(C(x)) such that A= B-'AB—B~'B €
H®c C(x), that is Y' = AY is equivalent to an equation Y' = AY with
A€ G®c C(x) and the equivalence is given by an element of G(C(x)).

These results allow us to formulate the following strategy to construct
differential equations with differential Galois group over C(z) a given
connected group G. Select A € G ®¢ C(z) such that

(i) the differential Galois group of Y’ = AY over C(z) is connected,
and

(i) for any proper connected linear algebraic subgroup H of G, there
is no B € G(C(z)) such that B"'AB — B™'B’ € H®c C(x).

We will assume for convenience that C C C. To insure that the differen-
tial Galois group is connected, we will select an element A € G ®¢ C|z],
that is a matrix with polynomial entries. This implies that there is a fun-
damental solution matrix whose entries are entire functions. Since these
functions and their derivatives generate the associated Picard-Vessiot
extension K, any element of K will be a function with at worst poles on
the complex plane. If E,C(z) C E C K is the fixed field of G°, then the
elements of E are algebraic functions that can only be ramified at the
singular points of Y/ = AY, that is, only at co. But such an algebraic
function must be rational so E = C(z) and therefore G = G°.

The next step is to select an A € G ®¢ C[x] satisfying condition (ii)
above. This is the heart of [78] and we shall only give two examples.

Example 1.6.10 G = C* x C* =

a 0
(55 ) 1er0
If G is the lie algebra of G then G ®¢ Clz] =

(4 7)) 1hnrece
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The proper closed subgroups of G are of the form

c 0 n m
Gm,n={<0 d)lCd :1}

m,n integers, not both zero. The connected subgroups are those Gm n
with m,n relatively prime. If Gn, n ts the lie algebra of Gp, . then
gm,n ®c C(l‘) =

g 0 _
{( 0 92) | mg1 + ngz = 0}

We need to find A = ( {)1 J? ) , f1, f2 € Clz] such that for any B =
2

( g 2 ) ,u,v € C(z), BAB™' — BB~ ¢ G, » ®c C(2), that is

! !

m(fl—%)+n(f2—%)=0¢m=n:0.

1t is sufficient to find f1, f2 € C[x] such that

!
mf1+nf2:%forsomeheC(ac)ém:n:O.

Selecting fi =1 and fo = /2 will suffice so

, (1 0
Y= < 0o vz)¥
has Galois group G.

Example 1.6.11 G = SL,. Its lie algebra is sl = trace 0 matrices. Let

1 1
A=A0+.TA1=((1) 0)+$(0 _01)

It can be shown that any proper subalgebra of sl is solvable and therefore
leaves a one dimensional subspace invariant. A calculation shows that
no U'U™! + UAU ! leaves a line invariant (see [78]) for details) and
so this equation must have Galois group SLo.

This latter example can be generalized to any semisimple linear alge-
braic group G. Such a group can be realized as the differential Galois
group of an equation of the form Y’ = (Ag + zA41)Y where Aq is a sum
of generators of the root spaces and A; is a sufficiently general element
of the Cartan subalgebra. In general, we have



Galois Theory of Linear Differential Equations 59

Theorem 1.6.12 Let G be a connected linear algebraic group defined
over an algebraic closed field C.One can construct A; € gl, (C) and
Ao € Clx] such that for distinct o; € C

Ay Aq

+ ...+
Ir — (1 I — (g

+ An)Y

has Galois group G.

Furthermore, the number d in the above result coincides with the
number of generators of a Zariski dense subgroup of G/L(G) and the
degree of the polynomials in A can be bounded in terms of the groups
as well. For non-connected groups [83] gives a construction to realize
solvable-by-finite groups and [84] gives a construction to realize certain
semisimple-by-finite groups. Finally, many linear algebraic groups can
be realized as differential Galois groups of members of classical families
of differential equations [85, 86, 87, 88, 89, 90, 91, 92].

To end this section, I will mention a general inverse problem. We know
that any Picard-Vessiot ring is the coordinate ring of a torsor for the
differential Galois group. One can ask if every coordinate ring of a torsor
for a linear algebraic group can be given the structure of a Picard-Vessiot
ring. To be more precise, let k be a differential field withe derivation 0
and algebraically closed constants C. Let G be a linear algebraic group
defined over C' and V' a G-torsor defined over k.

Does there exist a derivation on R = k[V] extending & such that R is
a Picard-Vessiot ring with differential Galois group G and such that the
Galois action of G on R corresponds to the action induced by G on the
torsor V2

When k& = C(z), this has can be answered affirmatively due to the
work of [93]. For a general k, finitely generated over C, I do not know
the answer. For certain groups and fields, Juan and Ledet have given
positive answers, see [94, 95, 96, 97].

Finally, the inverse problem over R(z) has been considered by [98].

1.7 Families of Linear Differential Equations

In this section we will consider a family of parameterized linear differen-
tial equations and discuss how the differential Galois group depends on
the parameter. I will start by describing the situation for polynomials



60 Michael F. Singer
and the usual Galois groups. Let C be a field and C its algebraic closure.

Let G C S,, = fixed group of permutations and P(n,m,G) =

{P=>"> ai;z'y lai; € C,Gal(P/C(z)) = G} c CmHNm+Y)

i=0 j=0

To describe the structure of P(n, m, G), we need the following definition

Definition 1.7.1 A set S C 61\[ is C-constructible if it is the finite
union of sets

{aeT" | file) =... = fi(a) = 0,9(a) # 0}
where fi,9 € C|X1,...,XN].

For example, any Zariski closed set defined over C is C-constructible and
a subset S C C is C-constructible if and only if it is finite or cofinite. In
particular, Q is not C-constructible in C. We have the following results
(see [99] and the references given there)

Theorem 1.7.2 P(m,n,G) is Q-constructible.

From this we can furthermore deduce
Corollary 1.7.3 Any finite group G is a Galois group over Q(z).

Proof (Outline) For G C S, one can construct an m-sheeted normal
covering of the Riemann Sphere with this as the group of deck trans-
formations, [100]. The Riemann Existence Theorem implies that this
Riemann Surface is an algebraic curve and that the Galois group of its
function field over C(z) is G. Therefore for some n, P(n,m,G) has a
point in C*tD(m+1) " Hilbert’s Nullstellensatz implies it will have a

—(n+1)(m+1)

point in Q and therefore that G is a Galois group over Q(z).

O

Differential Galois Groups of Families of Linear Differential
Equations. I would like to apply the same strategy to linear differ-
ential equations. We begin by fixing a linear algebraic group G C GL,,
and set L(m,n,G) =

(L= 0;;2'9 |a;; € C,Gal(L/C(x)) = G} c C+Dm+D

i=0 j=0
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Regrettably, this set is not necessarily a QQ or even a C-constructible set.
Example 1.7.4 We have seen that the Galois group of % — 2y s
GL1(C) if and only if « ¢ Q. If £(1,1,GL4) were C-constructible then

L(1,1,GL) N{xd —a |a € C} = C\Q

would be constructible. Therefore, even the set L(1,1,GL1) is not C-
constructible.
Example 1.7.5 Consider the family

Ty _

dx?

This equation has solution {e®*,e*2*}. Assume ap # 0. If a1/as ¢

Q then DGal = C* & C* while if a1 /az € Q then DGal = C*. There-
fore, £(2,0,C* & C*) is not C-constructible.

d
(011 +012)d—2;+0110£2y=0 G=C"eqCr

Recall that for L € C(z)[0] and zo a singular point L(y) = 0 has a
fundamental set of solutions:

yi = (@ — )P P03 by (log(x — 20)?)
j=0

where p; € C, t! = (z — ) for some ¢ < n!, P; are polynomials without
constant term, b;; € Cl[z — zo]].

Definition 1.7.6 The set Dy, = {p1,..-,pn, P1,..., Pp} is called the
local data of L at xg.

In Example 1.7.4, 0 and oo are the singular points and at both of these
{a} is the local data. In Example 1.7.5, oo is the only singular point
and the local data is {P; = %+, P, = %22}. In both cases, the parameters
allow us to vary the local data. One would hope that by fixing the local
data, parameterized families of linear differential equations with fixed
Galois group G would be constructible. This turns out to be true for
many but not all groups G.

Definition 1.7.7 Let D = {p1,...,pr, P1,..., Ps} be a finite set with
p; € C and P; polynomials without constant terms. We define

L(m,n,D,G) = {L € L(m,n,G) | Dy C D for all sing pts a € S*}
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Note that we do not fix the position of the singular points; we only fix
the local data at putative singular points. Also note that £L(m,n,D) =
{L =302 00i;z°% lai; € C, Dy, C D, for all sing pts zo} is
a constructible set. To describe the linear algebraic groups for which
L(m,n,D,G) is a constructible set, we need the following definitions.

Definition 1.7.8 Let G a linear algebraic group defined over C, an
algebraically closed field and let G° be the identity component.

1) A character x is a polynomial homomorphism x : G — C*.

2) Ker X (G°) is defined to be the intersection of kernels of all characters
x:G° — C*.

Examples 1.7.9 1) If G is finite, then Ker X (G°) is trivial.
2) If G° is semisimple or unipotent, then KerX (G°) = G°.

One can show [77] that Ker X (G®) is the smallest normal subgroup such
that G°/Ker X (G°) is a torus. In addition it is the subgroup generated
by all unipotent elements of G°. Furthermore, KerX(G°) is normal in
G and we have

1 - G°/KerX(G°) — G/KerX(G%) — G/G" — 1

Finally, G°/KerX (G°) is abelian, so we have that G/G° acts on
GO/KerX (GY).

Theorem 1.7.10 [77] Assume that the action of G/G° on
G°/KerX(GP) is trivial. Then L(m,n,D,G) is constructible.

Examples 1.7.11 The groups G that satisfy the hypothesis of this the-
orem include all finite groups, all connected groups and all groups that
are either semisimple or unipotent. An example of a group that does not
satisfy the hypothesis is the group C* x {1, —1} where —1 sends ¢ to c™!.

For groups satisfying the hypothesis of this theorem we can prove a
result similar to Corollary 1.7.3.

Corollary 1.7.12 Let G be as in Theorem 1.7.10, defined over Q. Then
G can be realized as a differential Galois group over Q(x).

Proof (Outline) Let G be as in Theorem 1.7.10, defined over Q. We
know that G can be realized as the differential Galois group of a linear
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differential equation over C(z), e.g., Theorem 1.6.3. A small modifica-
tion of Theorem 1.6.3 allows one to assume that the local data of such
an equation is defined over Q (see [77]). Therefore for some n,m,D,
L(m,n,D,G) has a point in C*+D(m+1) " The Hilbert Nullstellensatz
now implies that £(m,n,D,G) has a point in @("+1)(m+l). Therefore

G C GL,, is a differential Galois group over Q(z). O

The above proof ultimately depends on analytic considerations. We
again note that Harbater and Hartman [81, 82] have given a direct al-
gebraic proof showing all linear algebraic groups defined over Q can be
realized as a differential Galois group over Q(z)..

The hypotheses of Theorem 1.7.10 are needed. In fact one can construct
(see [77], p. 384-385)) a two-parameter family of second order linear
differential equations L, +(Y) = 0 such that

o L,+(Y) = 0 has 4 regular singular points 0,1,00,a and exponents
independent of the parameters a,t,

e for all values of the parameters, the differential Galois group is a
subgroup of C* x {1, —1} where —1 sends ¢ to ¢~ 1.

e there is an elliptic curve C : y? = f(z), f cubic with (f,f') = 1
such that if (a,y(a)) is a point of finite order on C then there exists
a unique ¢ such that the differential Galois group of L, (Y) = 0 is
finite and conversely, the differential Galois group being finite implies
that (a,y(a)) is a point of finite order on C.

One already sees in the Lamé equation

Lusey) = [@)" + 5 /(@) = (n(n + 1)z + Bly =0

where f(z) = 4z(z — 1)(z — e), that the finiteness of the differential
Galois group depends on relations between the fourth singular point
e and the other parameters. For example, Brioschi showed that if
n+ 3 € Z, then there exists a P € Qu,v] such that L, p.(y) = 0
has finite differential Galois group if and only if P(e, B) = 0. Algebraic
solutions of the Lamé equation are a continuing topic of interest, see
[101, 102, 103, 104, 105, 106, 107].

Finally, the results of [77] have been recast and generalized in [108, 109].
In particular the conditions of Theorem 1.7.10 are shown to be necessary
and sufficient and existence and properties of moduli spaces are exam-
ined (see also Chapter 12 of [5]).
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Parameterized Picard-Vessiot Theory. In the previous paragraphs,
I examined how differential Galois groups depend algebraically on pa-
rameters that may appear in families of differential equations. Now I
will examine the differential dependence and give an introduction to [33]
where a Galois theory is developed that measures this. To make things
concrete, let us consider parameterized differential equations of the form

%g = A(H,‘,tl,...,tm)y Aegln(C(x,tl,...,tm)). (14)
If x = x9,t1 = 71,...,tm = Ty is a point where the entries of A are ana-
lytic, standard existence theory yields a solution Y = (y; j(z,t1,...,tm)),
with y; ; analytic near * = xg,t; = 71,...,tm = Tm. Loosely speaking,
we want to define a Galois group that is the group of transformations
that preserve all algebraic relations among z,t1,...,tn, the y; ; and the

derivatives of the y; ; and their derivatives with respect to all the vari-
ables x,t1,...,tm.

To put this in an algebraic setting, we let k = C(x,t1,...,tn) be a
(partial) differential field with derivations A = {9o,04,...,0m},00 =

3%, Bizaitlizl,...m. We let

K =k(yi1,- Ynm, - 017052 - On Yy ) = kY11, Ynim)a.

Note that the fact that the y; ; appear as entries of a solution of (1.4)
implies that this field is stable under the derivation dy. We shall define
the parameterized Picard-Vessiot group (PPV-group) DGala(K/k) to
be the group of k-automorphisms ¢ of K that commute with all 9;, i =
0,...,m.

Example 1.7.13 Let n =1,m =1,k = C(z,t),A = A = {0;,0:} and
@ ot

or  z7
This equation has y = xt = e''°8® as a solution. Differentiating with re-
spect to t and x shows that K = C(x,t,2",logz). Let o € DGala(K/k).

Claim 1: o(z') = ax?, a € K, 9;(a) =0 (and so a € C(t)). To see this
note that 0o (z') = Lo(at) so 0y (o(z!)/z') = 0.

Claim 2: o(logz) =logz +¢, ¢ € C. To see this, note that 0y0(logz) =
1 50 dx(o(logz) — logz) = 0. Since dy(logz) = 0 we also have that
Or(o(logx) — logz) = 0.

Claim 3: o(z') = ax',0,a = 0, &ya = ca, ¢ € C. To see this note
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t and

that o(0z') = o(logz 2') = (logz + c)axt = alogz z' + cax
Oro(zt) = O(az') = (ra)z’ + alogz '
Therefore,

{a€k® | da=0, at(%) =0}

{a € k* | 8,a=0, d*(a)a — (0:(a))* = 0}

DGala (K /k)

Remarks: (1) Let ko = ker 9, = C(¢). This is a 0;-field. The PPV-group
DGala (K/k) can be identified with a certain subgroup of GL; (ko), that
is, with a group of matrices whose entries satisfy a differential equations.
This is an example of a linear differential algebraic group (to be defined
more fully below).

(2) In fact, using partial fraction decompositions, one can see that

0

{a€k*|da=0, at(%“) =0} =C*
This implies that for any o € DGala(K/k), o(logz) = log z. If we want
a Fundamental Theorem for this new Galois theory, we will want to have
enough automorphisms so that any element v € K'\k is moved by some

automorphism. This is not the case here.

(3) If we specialize t to be an element 7 € C, we get a linear differential
equation whose monodromy group is generated by the map y +— e2™7y.
One can think of the map y — e?™y as the “parameterized monodromy
map”. I would like to say that this map lies in the PPV-group and that
this map generates a group that is, in some sense, dense in the PPV-
group. We cannot do this yet.

Remarks (2) and (3) indicate that the PPV group does not have enough
elements. When we considered the Picard-Vessiot theory, we insisted
that the constants be algebraically closed. This guaranteed that (among
other things) the differential Galois group (defined by polynomial equa-
tions) had enough elements. Since our PPV-groups will be defined by
differential equations, it seems natural to require that the field of dy-
constants is “differentially closed”. More formally,

Definition 1.7.14 Let ko be a differential field with derivations Ay =
{01,...,0m}. We say that ko is differentially closed if any system of
polynomial differential equations

fl(yl’--',yn) == fr(yla---»yn) =Oag(yla~--ayn) #0
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with coefficients in ko that has a solution in some Ag— differential ex-
tension field has a solution in ko.

Differentially closed fields play the same role in differential algebra as
algebraically closed fields play in algebraic geometry and share many
(but not all) of the same general properties and, using Zorn’s Lemma,
they are not hard to construct. They have been studied by Kolchin
(under the name of constrained closed differential fields [110]) and by
many logicians [111]. We need two more definitions before we state the
main facts concerning parameterized Picard-Vessiot theory.

Definition 1.7.15 Let kg be a differential field with derivations Ay =
{01,...,0m}.

(1) A set X C k¥ is Kolchin closed if it is the zero set of a system of
differential polynomials over ky.

(2) A linear differential algebraic group is a subgroup G C GL,, (ko) that
is Kolchin closed in GL,, (ko) C k{}z.

Kolchin closed sets form the closed sets of a topology called the Kolchin
topology. I will therefore use topological language (open, dense, etc)
to describe their properties. Examples and further description of linear
differential algebraic groups are given after the following definition and
result.

Definition 1.7.16 Let k be a differential field with derivations A =
{00,01,...,0m} and let

Y = AY, Acgl (k) (1.5)

A Parameterized Picard-Vessiot extension (PPV-extension) of k for (1.5)
is a A-ring R D k such that R is a simple A-ring (i.e., its only A-ideals
are (0) and R) and R is generated as a A-ring by the entries of some
Z € GL,(R) and m where 0gZ = AZ. A PPV-field is defined to be
the quotient field of a PPV-ring.

As in the usual Picard-Vessiot theory, such rings exist and are do-
mains. Under the assumption that ko = kerdy is a differentially closed
Ay = {04, ...,0m}-field, PPV-rings can be shown to be unique (up to
appropriate isomorphism).

Theorem 1.7.17 Let k be a differential field with derivations A =
{00,01,...,0m} and assume that ko = kerdp is a differentially closed
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Ag = {D1,...,0m}-field. Let K be the PPV-field for an equation
Y =AY, A egl, (k).

(1) The group DGala (K /k) (called the PPV-group) of A-differential k-
automorphisms of K has the structure of a linear differential algebraic
group.

(2) There is a Galois correspondence between A-subfields E of K con-
taining k and Kolchin Ag closed subgroups H of DGala (K/k) with nor-

mal subgroups H corresponding to field K that are again PPV-extensions
of k.

In the context of this theorem we can recast the above example. Let
ko,C(t) C ko be a differentially closed d;-field and k = ko(z) be a
A = {0;,0,} field where 0;(ko) = 0,0.(z) = 1,0:(x) = 0. One can
show that the field K = k < z* >a= k(a?,log) is a PPV-field for the
equation 0,Y = ﬁY with PPV group as described above. Because kg
is differentially closed, this PPV group has enough elements so that the
Galois correspondence holds. Furthermore the element €27 € kg is an
element of this group and, in fact, generates a Kolchin dense subgroup.

Remarks: (1) In general, let 9,Y = AY is a parameterized equation
with A € C(z,t1,...,tm). For each value of ¢ of t = (t1,...,tm) at
which the entries of A are defined and generators {~;} of the Riemann
Sphere punctured at the poles of A(z,t1,...t,), we can define mon-
odromy matrices {M;(¢)}. For all values of ¢ in a sufficiently small open
set, the entries of M; are analytic functions of ¢t and one can show that
these matrices belong to the PPV-group. If the equation 0, Y = AY
has only regular singular points, then one can further show that these
matrices generate a Kolchin dense subgroup of the PPV group.

(2) One can consider parameterized families of linear partial differential
equations as well. Let k be a A = {0o,...,0s,0s+1,-..,0m} and let

an:Ai)/, A; Egln(k), 1=0,...,s

be a system of differential equations with 0;(A;)+A;A; = 0;(A:)+ A, A;.
One can develop a parameterized differential Galois theory for these as
well.

(3) One can develop a theory of parameterized liouvillian functions and
show that one can solve parameterized linear differential equations in
terms of these if and only if the PPV group is solvable-by-finite.
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To clarify and apply the PPV theory, we will describe some facts about
linear differential algebraic groups.

Linear differential algebraic groups. These groups were introduced by
Cassidy [112]. A general theory of differential algebraic groups was ini-
tiated by Kolchin [113] and developed by Buium, Hrushovski, Pillay, Sit
and others (see [33] for references). We give here some examples and
results. Let ko be a differentially closed Ay = {01,...,0mn} differential
field.

Examples 1.7.18 (1) All linear algebraic groups are linear differential
algebraic groups.

(2) Let C = N, ker 0; and let G(ko) be a linear algebraic group defined
over kg. Then G(C) is a linear differential algebraic group (just add
{01yij = ... = Omyi,j = 0}} ;1 to the defining equations!).

(8) Differential subgroups of

Ga(ko)=(k0,+)={( (1) : ) | 2 € k).

The linear differential subgroups of this group are all of the form
Gilvolsl = {7 e kg | Li(2) = ... = Ly(z) = 0}

where the L; are linear differential operators in ko[O1,...,0m]. When
m =1 we may always take s = 1.

For example, if m = 1,
Gl ={z€ky|dz=0}=G,.(C)

(4) Differential subgroups of Gm(ko) = (k§, x) = GL1(ko). Assume
m=1,Aq = {0} (for the general case, see [112]). The linear differential
subgroups are:

e finite and cyclic, or

o GL = {2 € k§ | L(2) = 0} where the L is a linear differential

operator in ko[0].

For example the PPV group of Ezample 1.7.13, G2, = {z € ko | (%) =
0} is of this form. The above characterization follows from the ezactness

of
(1) — G(C) — Grmlko) "=3 Galko) — (0)
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and the characterization of differential subgroups of G,. Note that in
the usual theory of linear algebraic groups there is no surjective homo-
morphism from G, to G,.

(5) A result of Cassidy [112] states: if m = 1, Ag = {0} and H is a
Zariski dense proper differential subgroup of SL,(ko), then there is an
element g € SL, (ko) such that gHg™! = SL,,(C), where C = ker 8. This
has been generalized by Cassidy and, later, Buium to the following. Let
H be a Zariski dense proper differential subgroup of G, a simple linear
algebraic group, defined over Q. Then there exists D = {Di,...Ds} C
kAg = k — span of Ag such that

(i) [Di,D;] =0 for1<i,j<s and

(ii) There exists a g € G(k) such that gHg™! = G(Cp), where Cp =
N, ker D;.

Inverse Problem. In analogy to the Picard-Vessiot theory, the question
I will discuss is: Given a differential field k&, which linear differential
algebraic groups appear as PPV-groups over k? Even in simple cases
the complete answer is not known and there are some surprises.

Let A = {0,,0:}, A0 = {0z}, ko a d-differentially closed 9;-field and
k = ko(x) with dp(ko) = 0,0:(z) = 1, an d(z) = 0. Let C C ko
be the A-constants of k. I will show that all differential subgroups of
G, = (ko,+) appear as PPV-groups over this field but that the full
group G, does not appear as a PPV-group [33].

One can show that the task of describing the differential subgroups of
G, that appear as PPV-groups is equivalent to describing which linear
differential algebraic groups appear as PPV-groups for equations of the
form

dy

- = a(t,x), a(t,z) € ko(x)

Using partial fraction decomposition, one sees that a solution of such an
equation is of the form

y=R(t,2)+ Y ai(t)log(x — bi(t)), R(t,x) € ko(x), ai(t), bi(t) € ko
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and the associated PPV-extension is of the form K = k(y). If H is the
PPV-group of K over k and o € H, then one shows that

o(y) = R(t,z) + Zai(t) log(z — bi(t)) + 2(:iai(t)
=1 i=1

for some ¢; € C. Let L € ko[£ have solution space spanned by the a;(t)
(note that L # 0). For any o € H, o can be identified with an element
of

H={2¢€Galko) | L(z) = 0.}

Conversely, any element of H can be shown to induce a differential auto-
morphism of K, so H is the PPV-group. Therefore H must be a proper
subgroup of G, and not all of G,. One can furthermore show that all
proper differential algebraic subgroups of G, can appear in this way.

A distinguishing feature of proper subgroups of G, is that they contain
a finitely generated Kolchin dense subgroup whereas G, does not have
such a subgroup. A possible conjecture is that a linear differential al-
gebraic group H is a PPV-group over k if and only if H has a finitely
generated Kolchin dense subgroup. If H has such a finitely generated
subgroup, a parameterized solution of Hilbert’s 22"? problem shows that
one can realize this group as a PPV-group. If one could establish a pa-
rameterized version of Ramis’s theorem that the formal monodromy, ex-
ponential torus and Stokes generate a dense subgroup of the differential
Galois group (something of independent interest), the other implication
of this conjecture would be true.

I will now construct a field over which one can realize G, as a PPV-
group. Let k be as above and let F' = k(logz, 2!~ 'e™%). The incomplete

Gamma function
x
'y(t,x):/ stle %ds
0

satisfies
d7 t—1_—x
— =z"e
dx

over F. The PPV-group over k is G,(kg) because 7, %}, ‘fiit},... are
algebraically independent over k [114] and so there are no relations to

preserve. Over k = ko(z), v(t, x) satisfies

d? t—1—z d
v zdy

dx? T dx
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and the PPV-group is

Ob

1
H {( . Z) | a € kobe ks 0(5) =0}

= Galko) xG%, G% = {be k] | at(%) =0

Isomonodromic families. The parameterized Picard-Vessiot theory can
be used to characterize isomonodromic families of linear differential
equations with regular singular points, that is, families of such equa-
tions where the monodromy is independent of the parameters.

Definition 1.7.19 Let k be a A = {do,...,0n}-differential field and
let A € gl, (k). We say that oY = AY is completely integrable if there
exist A; € gl (k),i =0,1,...,m with Ap = A such that

ain - &«Aj = A]'Ai - AiAj fOT all i,j = 0, ..M

The nomenclature is motivated by the fact that the latter conditions on
the A; are the usual integrability conditions on the system of differential
equations ;Y = AY i =,...,m.

Proposition 1.7.20 [85] Let k be a A = {0y, . .., Om }-differential field
and let A € gl, (k). Assume that ko = kerdy is Ao = {01,...,0m}-
differentially closed field and let K be the PPV-field of k for 0pY = AY
with A € gl (k). Let C =N ker 0;.

There ezxists a linear algebraic group G, defined over C, such that
DGala(K/k) is conjugate to G(C) over ko if and only if Y = AY
is completely integrable. If this is the case, then K is a Picard-Vessiot
extension corresponding to this integrable system.

Let k = C(x,t1,...,t,) and A € gl, (k). Fort = (¢1,...,tm) in some suf-

ficiently small open set O C C™, one can select generators {7;(t:, ..., tm)}
of the fundamental group of the Riemann Sphere minus the (parameter-
ized) singular points such that the monodromy matrices { M;(t1,...,tm)}

depend analytically on the parameters. One says that the differential
equation 0; Y = AY is isomonodromic if for some sufficiently small open
set O, the M; are independent of ¢. In [33] we deduce the following
corollary from the above result.

Corollary 1.7.21 Let k, A, O be as above and assume that 3, Y = AY
has only reqular singular points for t € O. Then 8, Y = AY is isomon-
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odromic if and only if the PPV-group is conjugate to a linear algebraic
group G(C) € GL,(C).

Second order parameterized equations. A classification of the linear dif-
ferential subgroups of SLy allows one to classify parameterized systems
of second order linear differential equations. To simplify the discussion
we will consider equations of the form

oY
o = Al )Y

that depend on only one parameter and satisfy A € sl,,(C(z, t)).

Let H be a linear differential algebraic subgroup of SLa (ko) (where ko
is a O;-differentially closed field containing C(¢) and kerd; = C) and
H its Zariski closure. If H # SL,, then one can show that H and
therefore H is solvable-by-finite [60, 112]. Furthermore, Cassidy’s result
(Example 1.7.18(3)) states that if H = SLy but H # SLo, then H is
conjugate to SLo(C). From this discussion and the discussion in the
previous paragraphs one can conclude the following.

Proposition 1.7.22 Let k and % = AY be as above. Assume that for
some small open set of values of t that this equation has only regular
singular points. Then either

e the PPV group is SLo, or
e the equation is solvable in terms of parameterized exrponentials,
integrals and algebraics, or

e the equation is isomonodromic.

The notion of ‘solvable in terms of parameterized exponentials, integrals
and algebraics’ is analogous to the similar notion in the usual Picard-
Vessiot theory and is given a formal definition in [33], where it is also
shown that this notion is equivalent to the PPV-group being solvable-
by-finite.

1.8 Final Comments

I have touched on only a few of the aspects of the Galois theory of linear
differential equations. I will indicate here some of the other aspects and
give pointers to some of the current literature.
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Kolchin himself generalized this theory to a theory of strongly nor-
mal extension fields [3]. The Galois groups in this theory are arbi-
trary algebraic groups. Recently Kovacic [115, 116] has recast this
theory in terms of groups schemes and differential schemes. Umemura
[117, 118, 119, 120, 121, 122] has developed a Galois theory of differen-
tial equations for general nonlinear equations. Instead of Galois groups,
Umemura uses Lie algebras to measure the symmetries of differential
fields. Malgrange [123, 124] has proposed a Galois theory of differen-
tial equations where the role of the Galois group is replaced by cer-
tain groupoids. This theory has been expanded and applied by Casale
[125, 126, 127]. Pillay [128, 129, 130, 131, 132] develops a Galois theory
where the Galois groups can be arbitrary differential algebraic groups
and, together with Bertrand, has used these techniques to generalize
Ax’s work on Schanuel’s conjecture (see [133, 134]). Landesman [135]
has generalized Kolchin’s theory of strongly normal extensions to a the-
ory of strongly normal parameterized extensions. The theory of Cassidy
and myself presented in Section 1.7 can be viewed as a special case of
this theory and many of the results of [33] can be derived from the the-
ories of Umemura and Malgrange as well.

A Galois Theory of linear difference equations has also been developed,
initally by Franke ([136] and several subsequent papers), Bialynicki-
Birula [137] and more fully by van der Put and myself [22]. André
[138] has presented a Galois theory that treats both the difference and
differential case in a way that allows one to see the differential case
as a limit of the difference case. Chatzidakis, Hrushovski and Kamen-
sky have used model theoretic tools to develop Galois theory of dif-
ference equations (see [139], [140] and [141] for a discussion of connec-
tions with the other theories). Algorithmic issues have been consid-
ered by Abramov, Barkatou, Bronstein, Hendriks, van Hoeij, Kauers,
Petkovsek, Paule, Schneider, Wilf, M. Wu and Zeilberger and there is
an extensive literature on the subject for which I will refer to Math-
SciNet and the ArXiV. Recently work by André, Di Vizio, Etingof,
Hardouin, van der Put, Ramis, Reversat, Sauloy, and Zhang, has been
done on understanding the Galois theory of g-difference equation (see
(142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152]). Fields with both
derivations and automorphisms have been studied from a model theo-
retic point of view by Bustamente [153] and work of Abramov, Bronstein,
Li, Petkovsek, Wu, Zheng and myself [154, 155, 156, 157, 158, 58, 159]
considers algorithmic questions for mixed differential-difference systems.
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The Picard-Vessiot theory of linear differential equations has been used
by Hardouin [160] to study the differential properties of solutions of
difference equations. A Galois theory, with linear differential algebraic
groups as Galois groups, designed to measure the differential relations
among solutions of difference equations, has been recently developed and
announced in [161].

Finally, I have not touched on the results and enormous literature con-
cerning the hypergeometric equations and their generalizations as well
as arithmetic properties of differential equations. For a taste of the cur-
rent research, I refer the reader to [162] and [163] for the former and
[164] for the latter.
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In this article, we review various methods to find closed form solutions
of linear differential equations that can for example be found in the
symbolic computation package MAPLE. We focus on the presentation of
the methods and not on the underlying mathematical theory which is
differential Galois theory (see [1, 2]). The text contains many examples
which have been computed using MAPLEf. We motivate the search of
solution by an integration problem and all the algorithms are motivated
via this integration problem.

2.1 Introduction
2.1.1 Integrating via linear differential equations

In 1832-3, Joseph Liouville publishes two articles on the determination
of integrals which are algebraic functions [3]. His goal is to design an
algorithm which decides when the integral of an algebraic function is
algebraic (and compute it when it is) or prove that the integral is not
algebraic. In this study, we will consider algebraic functions over C(z),
i.e. functions which are a root of a polynomial with coefficients in C(z).

1 A maple file containing all these computations and illustrating their use can be
found at
http://www.unilim.fr/pages_perso/jacques-arthur.weil/atde.mws or
http://www.unilim.fr/pages_perso/jacques-arthur.weil/atde.mpl.
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Example 2.1.1 Consider the function f given by

L1 Y- yEa+ve)

T4 z(z—1)

It may be defined by its minimum polynomial P(f) := Y1 (¢:if* =0
with ¢; € C(z) ; in our example :

s l@=17, 1 (xz-1)°

Pif) =1 +§ T —2 f 256 -2

Liouville shows that if the integral of f is an algebraic function, then
f must have a primitive in the algebraic field extension K := C(z, f)
defined by the equation P(f) = 0, i.e K = C(z)[Y]/(P) (we will give
a “modern” proof of this in section 5). So, if there exists an algebraic
primitive of f, then it can be written in a unique way as

/fdx = ag+arf+...+a,1f"!, where o; € C(z) (2.1)

in the basis (1, f,..., f*!) of K/C(x). Formal differentiation of P(f) =
0 shows that the derivative of an algebraic function f is given by

af ___Yiohf

de YL i-gifT

In particular %ﬂf belongs to the same algebraic extension K = C(z, f).

Differentiating the expression 2.1 of [ fdz, the relation ([ fdz)'— f =
0 yields a differential system of order one for the a;. Here, we obtain

(4 a1 4+§ (5x—12)a3)+a3,>f3+<1 5z — 12) a2 +a2'>f2

z-1)* 4 (@-1)(z-2 2 (@—1)(x—2)
B PR e 3 (x—1)2as / i(a:—l)zaz_
+(I’LO‘IJM;z—l 61 z-2 )tttz ooy =0

As P was the minimum polynomial of f, all coefficients of the above
polynomial expression in f must be zero, which in turn gives us the
following linear differential system :

¢ T — 2
% = _3(2(33 1)2)0‘2(:")
;L 1 3 (z-1)2
- a —7 @) - g (@) +1
;L (5z —12)
*2 2@z —-1)(z-2) Z(m)( )
. 1 3 (5z—12
s B ey Gl ey pep S C)
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This will be our leitmotiv example. We will show in section 2.3.2 that

this system admits the following rational solution in (C(z))" :
g = ¢
o = 4 —1022% + 147z + 48 4+ 352°
T (z —1)?
QG = 0
64 (z—2) (522 + 6z — 139)
s 315 (z - 1)5
where ¢ € C is a constant. We infer that :
/fd 4 (-1022% + 1472 + 48+ 352°)
YT 315 1)
64 (z—2) (5% + 62— 139
__( ) ( = )f3 +e
315 (z—1)

Or equivalently

/fd (-52° —6x+139+ vz —1 (352> — 622+ 91)) V—1+ Vo — 1
T = .
315z — 2

We see that Liouville’s method reduces the calculation of an integral
to the (simpler) problem of computing rational solutions of a linear dif-
ferential system. In what follows, we will show how to compute such so-
lutions ; elaborating, we will in fact show that the more general problem
of solving (in a sense that will be defined) a linear differential equation
Liy)=>", aij—;‘é = 0 (with a; € C(z)) reduces to computing rational
solutions of ancillary linear differential systems.

In the two aforementioned memoirs, Liouville already considers the
issue of computing algebraic solutions of L(y) = 0. He notes that the
main theoretical problem is to bound the algebraic degree of such a
solution. In 1872, H. Schwarz determines the values of parameters a, b, ¢
of the hypergeometric equation

Hape(y) = 2@ —1)y® +{c—(1+a+bz}y —aby = 0

for which Hypc(y) = 0 has an algebraic solution. In a long forgot-
ten first memoir of 1862 (corrected in 1881), P. Pepin shows how to
compute algebraic solutions of second order differential equations. This
problem is then handled by F. Klein and L. Fuchs (1875) who intro-
duce the use of linear groups and their invariants in this problem. In
his 1878 Mémoire sur les équations différentielles linéaires a intégrales
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algébriques (J. fir Math. 49), C. Jordan establishes methods for solving
third order equations. Although this does not constitute a full algo-
rithm, his ideas are a foundation of modern methods. Interested readers
may consult [4, 5, 6, 7, 8] for more historical details.

After the works of Vessiot or Marotte [5], this problem seems to wither
and get forgotten, probably because the corresponding calculations are
infeasible by hand ; it resurfaces in 1948 with the work on E. Kolchin
on algebraic groups and later with the appearance of computers and of
computer algebra. In 1977, J. Kovacic gives an algorithm for solving
second order equations ; in 1981, M.F. Singer gives a decision procedure
for solving linear differential equations of any order. Since then, many
improvements have been developed and these have been implemented
in computer algebra systems so that users can now really apply them
without being specialists. We will describe the state of some of these im-
provements in what follows. General references for this are, for example,
[8, 9, 2] and references therein.

2.1.2 Solutions of Linear Differential Equations

In what follows, we consider a field & (of characteristic 0) equipped with a
derivation D (typically, the reader may think of k = C(z) and D = %).
The set C = {a € k| D(a) = 0} of constants of k is a subfield of k ; for
technical convenience, we will assume it to be algebraically closed (in
general, C = C or C = Q).

Our aim is to describe some (algorithmic) methods for solving homoge-
neous ordinary linear differential equations

Ly) = y™ —any™ V= —ay=0 (a;€k). (22

The space of solutions of such an equation is a vector space over C of
dimension at most n ([10, 7]). To “solve” such an equation, we will
construct n functions (in general in some field extension of the field of
coefficients), linearly independent over C, which satisfy L(y) = 0. Simi-
larly, to solve a non-homogeneous equation L(y) = b, one will construct
a particular solution and adjoin a basis (a fundamental system) of solu-
tions of L(y) = 0.

To continue with our leitmotiv example of the integration of an alge-
braic function, we will first show that solving linear differential equations
is equivalent to solving linear differential systems.
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2.2 Linear differential equations versus linear differential
systems

The transformation of a linear differential equation L(y) = b to a first
order linear differential system in companion form

' 0 1 0 0
Y1 ) N 0
Y2 0 0 1 0 : Y2 0
PP — : ) ) 0 P + I
Yn—1 0 -+ -~ 0 1 Yn—1 0
Un ag a1 - Gp_2 Gn_y Yn b

is well known. It is then possible to go from the solution space of one to
the solution space of the other. It is however also possible to associate a
linear equation L(y) = b to a given arbitrary first order linear differential
system Y’ = AY + B, where A € M,,(k), B € k™.

Example 2.2.1 In the system (S) obtained from our integration exam-
ple, we can set z = ap + ag. Taking derivatives (and using the rela-
tions given by the o and their derivatives), it is possible to express the
derivatives (V) as linear combinations of the four unknown functions o
(G =0,...,3) : 2 must therefore linearly depend on z,...,23), so
that z satisfies the inhomogeneous linear differential equation L(z) = b,
where L(z) is given by

45 (146965 z* — 1342369 2 + 4634709 2% — 7115419 = + 4081618)

32 (z-2)(z—1)3(5525 23 — 37260 22 + 84801 z — 64586)
5 (927095 z* — 8377567 & + 28568871 2 — 43330157  + 24580270)

T (z —2) (z — 1)2 (5525 ° — 37260 z2 + 84801 = — 64586)
160225 z* — 1425785 23 + 4781433 22 — 7135291 x + 3988058

2(z — 2) (z — 1)(5525 2% — 3726022 + 84801 = — 64586

/

"

" 2(4),

—90555 2 + 284742 2% — 412627 z + 11050 z* + 230430

b = —6 .
(5525 23 — 37260 22 + 84801 z — 64586) (z — 1) (z — 2)

To each solution z of this equation, one can associate the following
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solution (a) of the first order differential system (S):

(27522 — 12132+ 1322) (z — 1) (z - 2)

@0(7) = 28 e T 36047 1 848017 — 61586
16 (37522 — 1633z 4+ 1762) (—1 4+ z)? (x — 2) ,

3 (552543 — 37260 x2 + 84801 z — 64586)

128 Ge-1)@-1*@=2%
3 552523 — 37260 22 + 84801 £ — 64586
+64 z(—611z + 14522 + 658

3 (5525 2% — 37260 22 4 84801 z — 64586) (x — 1)2

(@) = (—9219 2% + 22284z + 123523 — 17564) (z — 1)* |
o= 2 (5525 23 — 3726022 + 84301  — 64586)
(—13749 2% + 32644 = 4 188523 — 25364) (z — 1)°
3(5525 2% — 3726022 + 84801 2 — 64586) ‘
4 (652° — 3232 +390) (z — 2) (x —1)°
z

3 552523 — 37260 22 + 84801 7 — 64586
4 (z — 1) (14952° — 10197 2* + 23166 = — 17536)

3 5525 x3 — 37260 22 + 84801 x — 64586

() = -3 (1130523 — 7501222 + 167229 = — 124642) (z — 2)
;= (z — 1)2 (552527 — 3726022 + 84801 2 — 64586)
256 (—12123 22 4 26287 z + 1870 2* — 19034) (z — 2) ,,
3 (z—1) (552525 — 3726022 + 84801 z — 64586)
512 (852% — 367z +402) (z — 2)? 3)
z

"3 552523 — 37260 22 + 84801 7 — 64586
2048 (2 —2) (17023 — 10472 + 21752 — 1538)

3 (55252 — 3726022 + 84801« — 64586) (z — 1)°

(2752% — 121324+ 1322) (z — 1) (2 — 2)
z

= 8
a3(z) 5525 2% — 37260 22 + 84801  — 64586
16 (37522 — 1633z 4+ 1762) (-1 + z)? (z — 2) ,,

3 (5525 3 — 37260 x? + 84801 = — 64586)

128 (bx—11)(z—1)3(z —2)? L3
3 5525x3 — 37260 z2 + 84801 T - 64586
64 z(—611x + 14522 + 658

3 (552523 — 37260 22 + 84801 z — 64586) (z — 1)

This shows that solving the first order differential system can be re-
duced to solving the linear differential equation L(z) = b and the above
relation gives a bijection between the two solution spaces.

This approach can be turned into an algorithm as we shall see next.



Solving in closed form 89

2.2.1 Equivalent differential systems

In order to attach a linear differential equation to a given first order dif-
ferential system Y’/ = AY + B where A € M,,(k) and B € k", the idea is
to transform the system into companion form using a basis transforma-
tion Z = PY + 3 (where P € GL,(k), 8 € k™). Such a transformation
is also called a gauge transformation. Such a basis transformation pro-
duces a new system

7' =PY'+ P'Y + 8 = P[A|Z + (PB + 3 — P[A]B) (2.3)

where

P[A] = (PAP'+ P'P7Y)).

Two systems Y’ = AY + B and Z’ = AZ + B are said to be equiv-
alent or of the same type if there exists an invertible matrix P €
GL,(k) and B € k" such that A = P[A] := PAP~!' + P'P~! and
B = (PB+ ' — P[A]B). In this case the relation Z = PY + 3 is a
bijection between the two solution spaces.

2.2.2 From systems to scalar equation: cyclic vector approach

In order to transform the system into companion form using a basis

transformation, we consider an arbitrary solution (yi,y2, - ,yn)t of
Y’ = AY + B and use the Ansatz z; = \y1 + -+ + A\yn. Computing
successively zo = 21,..., 2n41 = z%n) using the relation Y/ = AY + B we

obtain n+ 1 relations between the n variables y;. Therefore the variables
z; must be linearly dependent over k, showing that z; is a solution of
the inhomogeneous linear differential equation £(z1) = Y1 bizy) =b.
We obtain this way Z = PY + ( and Z' = AZ + B.

If the matrix P is invertible, then (A1,...,\,)! is called a cyclic vector
for the initial system.

In the previous section, our choice corresponds to [1, 0,0, 1] which indeed
turned out to be a cyclic vector. However (1,0,0,0)! or (0,1,0,0)* are
example of vectors that are not cyclic for our system.

Since 20 = 21,. .., Znt1 = z§") the resulting system in Z is in companion
form and z; satisfies a linear differential equation £(z1) =Y ;. bizii) =
b. It can be proved (e.g [11, 2]) that almost any choice of (A1,...,An)"
produces a cyclic vector (“almost” means up to an algebraic sub-variety).
This justifies the probabilistic approach consisting of trying random vec-
tors in order to find a cyclic vector (in fact, non-cyclic vectors are rare
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but very useful because they provide a factorization of the differential
system).

Some of the algorithms that we will present in the remaining sections
are easier to explain for linear differential equations than for first order
systems, making the cyclic vector approach an useful tool. A drawback
of the transformation is the possible swell of the coefficients of the result-
ing equation. This motivated the search for algorithms that are directly
applicable to first order systems, therefore avoiding the possibly costly
transformation ([12] and the references therein).

2.3 Rational solutions

A rational solution is a solution in the ground field, i.e the field &
to which the coefficients belong. In the following we will focus on the
classical case k = C(z) (or C = C,Q,...). Our goal in this section
is to find a basis of those solutions of L(y) = Y1, ai(z)y® = 0 (with
polynomial a;(z) € C[z]) that belong to C(z). To achieve this, we will
use local information given by the Laurent series expansion of solutions
at some point c. If we write

ai(z) = aio(z — ) +aii(x — )T ...
and evaluate L(y) at a Laurent series expansion of a solution
p(z)

T

@) =bo(z —c)* +bi(z — )M ...
then the coefficient with the lowest valuation v = min{A+ §; — i} must
be zero. This shows that the order A of the series must be a root of the

indicial equation

inde(\) = > AA-1)--(A=(i=1))aio=0
{i] 4B, —i=~}

~

A root of the indicial equation is called an exponent of the linear dif-
ferential equation at the point ¢, and the above shows that there are at
most n exponents at each point c.

A point ¢ € C is a regular point if the exponents at this point are
0,1,...,n — 1 (and there is a basis of analytic solutions) and it is a
singular point otherwise. It is easily checked that the singular points are
the zeros of the highest coefficient a,(z) (and, possibly, co if we work
over the Riemann sphere).
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2.3.1 Computation of the rational solutions

The following method appears also in [3]. For k& = C(z), a rational
solution is of the form %. We start by computing the denominator
d(zx) of the fraction. Since the roots of d(z) are all singular points, those
roots must also be roots of a,(z). This leads to the ansatz

p(z) p(z)

d(x)_Hz (T —c)” J?)HLE—CZ
where ¢; € C are zeroes of p,(z) and A\; € Z are exponents of the
linear differential equation. A necessary condition for the existence of a
rational solution is that at each singular point there exists an exponent
in Z. Instead of trying all the possible combinations of exponents, we
choose for \; the smallest exponent in Z at ¢;. Our rational solution will
be of the form

S

523 ~ 1L (i(i)ci)—& =r@ -

with known denominator (the other possibilities for the exponents can
be put into this form by multiplying the numerator and the denominator
with a common factor).

Substitution of this expression into L(y) = 0 leads to a new linear
differential equation for the yet unknown numerator p(z) :

S

(z
Ep@) = L{p@) [[@-e)™ Zaz ( p(a) )

j=1 J j=r (@ =)™

n

> ai(e) (p()”

=0

~ We can clear denominators in order to obtain again an equation

Lly) = S0 yai(x)y® with a;(z) € Cla]. As we search for a poly-

nomial solution, we may look at the action of £ on a polynomial p(z) =
N i . .

Yo vix* with unknown coefficients using

a,(z) = =™ (ai,oo,o + O(é)) ~

Since we must have £(p(z)) = 0, the coefficient of the highest term must
be zero. Like for the indicial equation above, this leads to a polynomial

indo(A) = > AA=1)-+-(A= (i = 1))bi 000 = 0.
{i|>‘+ﬂz_i=’y}
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The possible degrees N of p(x) are the positive integer roots of this poly-
nomial. Again it is sufficient to consider the maximal positive integer
root N, which leads to the Ansatz p(z) = Ei}io v;xt with known degree
N.

From E(Zﬁio v:x2') = 0 we obtain a homogeneous linear system for
the N + 1 unknowns ;. Solving this linear system will produce a C-
basis {pi1(z),...,pm(x)} of the polynomial solutions of £(y) = 0, and
therefore a C-basis of rational solutions of L(y) = 0 of the form

{ y4! ("E) Pm (.Z‘) }
[[oi(@—c)™" I (@ =)™
The computational bottleneck in this algorithm resides in the way this
last linear system is handled. Algorithms exploiting the structure of this
system are presented in [13, 14, 12] and an optimal (up to date) version
is given in [15].

Note that the calculation of the degree N can be understood in a
slightly more conceptual way as follows. We look for a solution p(x) =
eVt pyo1aN T+ = (57N (1 4 pyo1d + O(L)) so we see that we
have a pole of order N at infinity so —N must be an exponent at infinity,
i.e a root of the indicial equation at infinity.

Exponents are easier to compute for linear differential equations than
for first order systems. However it is also possible to compute the ra-
tional solutions of Y' = AY ([12] and references therein) without con-
verting the system to a linear differential equation via a cyclic vector
computation.

2.3.2 Non homogeneous equations and solution of the
leitmotiv example

The previous method can be adapted to non homogeneous equations
L(y) = b (cf. [16] and references therein) but instead we will transform
the inhomogeneous equation into a homogeneous equation of higher or-
der L(y) = b(L(y))' =¥ L(y) = 0. Note that any rational solution of the
first will also be a rational solution of the second.

In our leitmotiv example, assuming Liouville’s theorem, we have re-
duced the integration problem of an algebraic integral to the problem of
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finding the rational solution of the inhomogeneous equation L(y) = b.
Using the above trick we are left with the following homogeneous equa-
tion L(y) =

45 440895 «5 + 19124660 3 — 41917722 &2 + 47163053 & — 4528916 x4 — 21498482
16 (z—2) ( 90555 3 + 284742 z2 — 412627 z + 11050 z4 + 230430) (z — 1)4
5 17478890 25 — 180447867 x4 + 761665199 3 — 1654880375 x2 + 1838740539 x — 827751650

’
Yy

"
Yy

32 (z - 1)3 (z -~ 2) (—90555 z3 4 284742 22 — 412627 z + 11050 24 + 230430)
22088950 =% — 228088635 x4 + 958764595 «3 — 2062761247 22 + 2264278659 © — 1007458642 e
+ 16 (x — 1)2 (r — 2) (—90555 * + 284742 22 — 412627 z + 11050 24 + 230430)
453050 £ — 4656315 24 + 19428215 23 — 41370911 £2 + 44911683 = — 19779482
@) 44 ¢

2(x — 1) (z - 2) (—90555 *3 + 284742 22 — 412627 x + 11050 24 + 230430)

The expressions look more and more terrifying, but are easily handled
by a computer.

The (finite) singular points are ¢; = 2, ¢z = 1, and the roots ¢; (i > 2)
of the irreducible equation

4 18111 3 142371 22 412627 - 23043
2210 5525 11050 1105

=0.

Computing the exponents (for example using the command gen_exp
in MAPLE), we find (0,1,2,3,3) at =2, (-5,-2,0,—3,-2) at z =1,
and (0,1,2,3,5) at ¢; (for i > 2). A rational solution of the homogeneous
equation must be of the form p(z)(z — 2)%(z — 1) 75 [[,o,(z — ¢;)°, or
simply 22

We compute the differential equation L for p with L(p(z)) = L( f (Il)) ).
According to our method, the degree N of p is such that N € {3, 5}.

The solution p(z) we are looking for must be of the form

p(x) = 70 + Nz + 122® + v32° + yazt + 520

Plugging this ansatz into the relation L(p(z)) = 0, we obtain the
following linear system :

0 0 —1125 ~900 53959 267545
0 0 0 0 -1 -5
22732650 51866405 239145235 493746279 463316707 — 466026280 o
11443680 16808410 —44942425 — 164608566 —313297728 — 442425600 mn
0 0 0 0 1 5 2
0 61880 3442015 4622388 —39011582 —207171040 73
1868670 13070140 162697775 420978396 691480368 811113600 4
—3729375 —8503865 — 47608495 — 87550269 34987468 613145030 75
—56964465  —140390815  —733512410 —1659388287  —2308356996  — 1638036600
=0

solving the system produces the following rational solutions of our
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linear differential equation :

(—132 — 243 4 1Bl g 4 22) —696 — 223 + 1B g — 5% + 25

V= (-1 = (-1
where 2 and 5 are arbitrary constants in C. Note that {y5 = 1,72 =
—10} corresponds to the obvious solution y =1 .
In order to obtain the rational solutions of our inhomogeneous equa-
tion, we simply substitute y into this inhomogeneous equation and obtain

64 (z—2) (522 4+ 6z — 139)
315 (z—1)°
where v is an arbitrary constant. Now, to solve the integration problem
of our leitmotiv example, we substitute this solution into the relations

(o) page 88. The resulting solution of the system (S) is the one given
in the introduction and we recover the integral given on page 84.

V5.

+ 7

2.4 Factorization and Reduction of Order of a Differential
Equation

One way to simplify the solving of L(y) = 0 is to find a factorization in
the form of a composition L(y) = L1(L2(y)) of operators. Solutions of
Ls(y) = 0 would then be solutions of L and we would have reduced the
order of the equation that we want to solve. However, this factorization
is not unique.

This factorization can be given an algebraic (and computable) mean-
ing in an appropriate setting.

2.4.1 Differential operators

First let us write L as a differential operator
L(y) = (an(x)D™ + ... + a1(z)D + ao()) (y)

where the symbol D represents %. To endow the set of differential
operators with a ring structure (of non-commutative polynomials, or
Ore polynomials), we note that

d d
D - = - = = 1
(Dz)(y) = ——(zy) = e ——(y) +y = (D + 1) (y)
Using this rule Dx = zD + 1, one can show that the set D := k[D] of
differential polynomials, with the usual addition and the above multi-

plication rule (for any a € k, D.a := aD + a’) is a non commutative
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ring. As hinted above, multiplication in this ring corresponds to the
composition of differential operators. Furthermore, one can show that
D is a left (resp. right) Euclidean ring, which means that one has notions
of computable ged (left or right), least common (left or right) multiple,
etc.

2.4.2 Factorization of L

There exist several factoring algorithms; we will display them on our
leitmotiv example.

Example 2.4.1 In our leitmotiv example, we remark that D is a factor
on the right of our operator L.

Using one of the available factoring algorithms (e.g the command DFactor
in MAPLE), we have a “complete” factorization of L in the form

L=(D+ fi)(D+ f2) L21 D, with f1, f2 € C(x)
where T

(—121232° + 1870 2° 4 26287 z — 19034)
2(8522 — 3672 +402) (z —2) (x = 1)
3 113052% — 7501222 + 167229 2 — 124642
16 (z—2)(z—1)?(852% — 367 + 402)

Ly = D*+

When L = M - N, suppose that we know a solution y of N(y) = 0;
then L(y) = M(N(y)) = M(0) = 0 so solutions of N are solutions of
L. There is a kind of converse to this result: if N is an irreducible
operator of order lower than the order of L, and if there exists y such
that both N(y) =0 and L(y) = 0, then N is a right factor of L. This is
a consequence of the facts that D is left euclidean and that an operator
of some order r possesses at most r linearly independent solutions.

We now will show that L could admit many different factorizations.

Example 2.4.2 In our example, we observe many other factorizations;
they can be computed via the eigenring method introduced by Singer
(see [17, 18, 19]) using the commands DFactorLCLM or eigenring in

t The full expressions of fi; and fa are heavy and uninteresting here ; however, the
reader is encouraged to check them with her/his favorite computer algebra system.
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MAPLE. For example,
L = (D+f)(D+fr)(D+f3)

D2y 3 (62-13)D 3 852 367z 1 402
222 -32+2 16 (22 -3z +2)° ’

with ﬂ ck.

One can show (and we verify it on our examples) that the number of
factors (and their order, i.e the degree in D) is unique (up to “isomor-
phisms” and permutation of factors)f. But there can still be infinitely
many factorizations. In order to exhibit infinitely many factorizations,
recall that in part 2.3.2 we had found a basis of the rational solutions
to L{y) =0 given by y =

(139 — 823 4 18l 7 4 22) N —696 — 223 + B g — 52 4+ 2°
(@— 1) " (@—1)p

Vs

If we denote by f = % the logarithmic derivative of such a solution,
then D — f is a right-hand factor of L (because (D — f)(y) = 0). Now
f depends on two parameters (arbitrary constants) so we have infinitely
many right-hand factor which will be of the form D—

(32 +102° + 1239 — 612z) (72 + 107s)
(4% —20x* — 1023 + 1530z — 2784)y5 — (x — 2) (5z2 + 62 — 139) y2) (z — 1)

2.4.3 Decomposition of L

We have seen that finding right-hand factors amounts to finding distin-
guished subspaces of the solution space of L. To study solutions of L,
one may ask for something stronger than a factorization of L, namely
a decomposition of L as the Least Left Common Multiple (LCLM) of
lower-order operators L;.
When this is the case, the solution space of L is the direct sum (as a
vector space) of the solution spaces of the L;. This simplifies greatly
the operation of solving L, of course; it is roughly what the eigenring
method (mentioned above) computes (when possible).

We may sketch this method as follows. The eigenring £(L) consists
of operators R, of order less than that of L, such that there exists an

t it is a consequence of the Jordan-Holder theorem for D-modules.
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operator S with L.R = S.L. We then have that, if L(y) = 0 then
L(R(y)) = S(L(y)) = S(0) = 0 so R induces an endomorphism of the
solution space V(L). For an eigenvalue X of this endomorphism R, there
exists an y € V(L) (i.e a solution of L) such that (R — A)(y) = 0. This
means that L and (R — \) have a solution in common, so the right-ged
of L and R — X is a non-trivial factor. The decomposition of V(L) as a
direct sum of characteristic subspaces of R induces a decomposition of
L as the LCLM of the corresponding factors. This method is developed
in [17, 18, 19].

2.4.4 Ezxponential Solutions

We may give an idea of how to factor by focusing on first-order factors
(in fact, the search for factors of higher order may be reduced to this
question, see [8, 2] for more details and references).

A first order factor is of the form D — f with f € k. The operator L

admits such a factor on the right if and only if the equation L(y) = 0 ad-
mits a solution y such that y’ = fy. Because such a y is an exponential
(of an integral of f), one calls such a solution an ezponential solution of
L(y) = 0. These solutions will also prove useful in part 2.5.
The algorithm for computing such solutions is roughly similar to (though
quite a bit longer in practice than) the algorithm for computing rational
solutions: we first compute what could be the behavior at the singular-
ities and then search for a polynomial that would “glue together” these
local pieces of information.

For our leitmotiv equation L(y) = 0, one can show ([20, 8, 21] as our
equation is fuchsian) that any exponential solution to our equation will
be of the form y = szl (z—c;)N p(z), where p is a polynomial, the ¢; are
the singularities, and the A; are exponents (not necessarily integers, as
opposed to what happened with rational solutions) of the singularities
¢j. For each combination of the \;, we set y = [[5_,(z — ¢;)» 2, we
compute the linear differential equation satisfied by z, and look whether
it admits polynomial solutions. This is hence similar to the situation
for rational solutions ; however, this is much more costly because many
combinations (the number is exponential in the number of singularities)
of the A; have to be checked.

In part 2.3.2, we had already found two rational solutions to L(y) =
0. Studying the exponents at the singularities which we had already
computed, we see that there remain three types of putative exponential
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solutions:

1 1 (z—2)%
@_—1)5171(56)» mpz(ﬂﬂ), mm(ﬂﬂ)'

We have found a basis of two possibilities for the polynomial p;, which

gave us a vector space of rational solutions of dimension 2. For the third

possibility, calculation shows that no polynomial ps fits. For the second

possibility, calculation again shows that ps = 1 is the only polynomial

solution, up to multiplication by a constant, and we obtain the expo-

nential solution y3 = \/%; the corresponding right hand factor of L

is D + ﬁ You could also retrieve this result using the command
expsols in MAPLE.

A more sophisticated algorithm for exponential solutions, using a
smart mix of local informations and reductions modulo primes, is given
in [22].

2.5 Liouvillian solution

Since our leitmotiv example L(y) = 0 is of order five, we need to com-
pute a basis of solutions of dimension five over C in order to obtain all
solutions. We already computed a two dimensional space of rational so-
lutions and one exponential solution. In order to find the remaining two
solutions, we will have to look for solutions in a larger class of functions.
Those two solutions will be solutions of the second order left factor of
the second factorization of L computed in the previous section :
3 (6z—13)

La(y) = y"(z) + 2@-2 (-1

, 3 (85 z? - 367z + 402)
y'(z) + 16 (@— 2)2 (@— 1)2 y(z)

We will now turn to more general class of solutions consisting of those
functions that can be written using the symbols [, e/ and algebraic
functions. The so-called Liouvillian solutions are formally defined in the
following way

Definition 1 A function is Liouvillian over a (differential) field k if the
function belongs to a (differential) field extension K of k where

k=KyCK, C---CKny=K
such that for i € {1,...,n — 1} we have K;11 = K;(t;) where

(i) t; is algebraic over K; (algebraic extension), or
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(ii) t; € K; (extension by an integral, here t; = [u, where u € K;),
or
(i) t;/t; € K, (extension by the exponential of an integral).

The following function is liouvillian over C(z) :

vz exp([ Vz + 1dz)

[ exp(x?) dz

2.5.1 Dzifferential Galois theory and algorithms

In classical Galois theory one shows the existence of a splitting field of a
polynomial which is the smallest field extension containing all the roots.
The classical Galois group sends a root into another root and therefore
permutes the roots. Properties of the polynomial and its roots are mir-
rored in the structure of the classical Galois group. For example the
polynomial is irreducible over the coefficient field if and only if the per-
mutation action on the root is transitive and the polynomial is solvable
by radicals if and only if the group is solvable.

A similar theory exists for linear differential equations as a result of
work of Picard, Vessiot and Kolchin. Note that the solution space of
L(y) = 0 is a vector space over the field of constants, and therefore
the field of constants C' will play an important role in the theory. It
is convenient to assume that C is algebraically closed of characteristic
zero and we will make this assumption throughout the remaining of this
section. Another new ingredient we will have to take into account is the
notion of a derivative. One shows that there exists a differential splitting
field called the Picard-Vessiot extension (in short PV extension), which is
the smallest differential field extension containing a full basis of solutions
as well as all derivatives of those solutions, but no new constants.

Example 2.5.1 The Airy equation A(y) = y” — xy over k = C(z) has
a C-basis of solutions given by

y1—1+z 3J(3J—1) ;

The PV extension is (C(x, Y1,Y2,Y1,Y5). Note that higher derivatives
of y; can be expressed using the y; and y., like yi = zy;. We have
Y1ys — Y1y2 = 1 as a differential relation among the solutions. S

31+1

1335 +1)

Definition 2 The differential Galois group G of the equation L(y) =0
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(in fact of the PV extension K/k associated to L(y) = 0) is the set of
automorphisms of K that leave elements of k fixred and commute with
the derivation.

G = {0 € Aut(K/k)|oD = Do}

Since G fixes the coefficients a; € k of L(y) = Y1, a;y™ and com-
mutes with the derivation, we get for 0 € G and any solution y; of
L(y) = 0 that

0=0(0) = o(Liy)) =0 (Z y“> =Y ai (o) = Lloy)).
=0 =0

Therefore G sends a solution of L(y) = 0 into a solution. If y1,y2,...,¥n
is a C-basis of the solution space in the PV extension, then o(y;) =
Z?zl ¢i,;y; where ¢; ; € C. This shows that G has a faithful represen-
tation as a group of n x n matrices (c;,;) over the field of constants C
(while the classical group is a permutation group, the differential Galois
group is a linear group). Like the classical Galois group, the differential
Galois group mirrors the properties of the linear differential equation
and its solutions.

Proposition 1 (/23]) Under our standard assumptions and notations,
the following holds :

(i) All solutions of L(y) = 0 are rational (i.e. in k) if and only if
G = {id}.
(ii) All solutions of L(y) = 0 are algebraic over k if and only if G is
a finite group.
(iii) L(y) has a non trivial factorization L1(L2(y)) if and only if G C
GL,(C) is a reducible linear group (there exists a non trivial
subspace W such that Vo € G, (W) =W ).

In fact the differential Galois group has an important additional prop-
erty, it is a linear algebraic group. This means that the set of matrices
(ci j) of the group G, where each matrix is viewed as points in the space
C™, is an algebraic variety over C. This imposes strong restrictions as
we shall now see in connection with our integration problem.

Example 2.5.2 The computation of an integral [a for a € k cor-
responds to the resolution of the inhomogeneous differential equation
y = a. With our previous trick, we can transform this to a homoge-
neous equation L(y) = T %'y’. The C-basis of the solution space



Solving in closed form 101

of the latter is {1, [ a}, showing that the PV extension in this case is
simply K = k([ a). In order to find the matriz of an element 0 € G
in the basis {1, [ a}, we note that o(1) =1 (because 1 € k) and since o
commutes with the derivation we obtain :

(+(f)- o) = ot@r-a=a-a s

This shows that o( [ a)— [ a is a constant ¢, € C and therefore o( [ a) =
Ja+ c,. The matriz of o is thus

1 ¢,
(s 7)

The group G consists of the “points” (c; j) € C* which are zeros of the
polynomial system c1,1 = c2.2 = 1,c2,1 = 0. This variety is isomorphic to
C and we find that G is a subgroup of the additive group (C,+). Algebraic
sub-varieties of C must be zero sets of one polynomial and are therefore
either finite sets or C. Since an additive subgroup G of (C,+) is either
{0} or contains infinitely many elements, the only possibilities for G are
{0} and C.

If G = {0}, then all solutions and in particular f a, are rational and
therefore belong to k. Otherwise G = (C,+) and not all solutions are
algebraic, which implies that [ a is not algebraic (and therefore must be
transcendental over k). S

The above example gives a proof of a result very similar to Liouville’s
theorem on algebraic integrals stated in the introduction :

Theorem 1 (Liouville) Let k be a differential field with algebraically
closed field of constants of characteristic zero. The primitive [a ofa € k
is either in k or is transcendental over k. In particular, an integral that
is algebraic over k must be in k . o

Liouville’s original proof of the above is easier and more linked to the
algebraic step of the Liouvillian extensions than to the integral step of
the Liouvillian extensions:

Example 2.5.3 Suppose that f is algebraic over the differential field
(k, D) and that the minimal polynomial of f is p(X) = X"H—ZZZBI a; X"t
A derivation A on the algebraic field extension k(f) which is an exten-
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sion of D must satisfy

m—1 m—1
0= p(f) = mff" '+ Y af fTH+ ) aif
i=0 i=0

This shows that
IR Dy

mfml Y a1
and that there is at most one such derivation. One can verify that the
formula indeed defines a derivation on k(f). If o € Aut(k(f)/k) is an
automorphism, then cDo ™! is also a derivation of k(f) and therefore
oDo~! = D, showing that for any automorphism oD = Do. Thus the
differential Galois group and the classical Galois group coincide for al-
gebraic extensions.
Liouville now noted that if f' = a (or f = [a), then for all o €
Aut(k(f)/k) we have o(f) = a. Therefore the trace of f (the sum
of all conjugates) is again an integral of a which is in k.
Another consequence of f' € k(f) is that all kigher derivatives f",--- | f(™
of f also belong to k(f). Since [k(f) : k] = m, the m + 1 elements of
o ", £ must be linearly dependent over k, showing that f is
the solution of a linear differential equation over k of degree at most m.

f=

The existence of a liouvillian solution is also reflected in the differential
Galois group. First we note that the set of liouvillian solutions is a G-
invariant sub-space of the solution space and therefore that there is a
right factor whose solutions are all liouvillian solutions of L(y) = 0
(cf. Example 2.4.1 and 2.4.2). For this reason most algorithms first
factor (and, possibly, decompose as an LCLM) the given differential
equation and then look for liouvillian solutions of irreducible right-hand
factors.

For irreducible equations, the existence of a liouvillian solution is
equivalent to G C GL,(C) having a finite subgroup H leaving a one
dimensional subspace generated by a solution z of the solution space
invariant ([24]). In more sophisticated terms, an irreducible equation
L(y) = 0 has a liouvillian solution if and only if the component of the
identity G° of the linear algebraic group G is solvable ([23]). Using a
theorem of C. Jordan and a bound of I. Schur, it is possible to bound
the index [G : H] of the largest group H with the above property ([20])

GiH < fm) < (Ve +1)" - (VEa-1)

2n?
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Note that the bound is independent of the actual equation L(y) = 0 and
depends only on the order of the equation. Since H C G, its elements
o commute with the derivation and H leaves the line generated by z
invariant ; so, we find that Vo € H, 0(2) = ¢,z and o(2’) = ¢,2’. In
particular H being maximal with this property is the stabilizer of 2//z
and we get that the orbit of u = 2’/z is finite of length [G : H] < f(n).
This shows that u is algebraic of degree at most [G : H] < f(n) and
that L(y) = 0 has a solution z of the form z = e/ * where u is algebraic
of degree at most [G : H] < f(n). We obtain that if L(y) = 0 has
a liouvillian solution, i.e. a solution that can be written in [, el and
algebraic functions, then it has a solution of the form z = e/ * where
u is algebraic of bounded degree (|23, 20]). The existing algorithms
to compute liouvillian solutions will attempt to compute the minimal
polynomial of u of the form

Pu)=u" 4 by u™ ..+ biutb =0 (b; € k)

by trying degrees less than the above bound. If no polynomial is found,
then there is no liouvillian solution.

A classification of the subgroups of GL,(C) allows one to give a more
precise list of the possible degrees (many other degrees are possible, but
this is the list of the smallest degrees):

(i) For n = 2, 3u = Zz’/z such that [k(u) : k] € {1,2,4,6,12}

(cf. [25]).
(ii) For n = 3, 3u = 2’/z such that [k(u) : k] € {1,3,6,9,21,36}
(ct. [26, 24]).

(iii) For n =4, 3u = z'/z such that (cf. [27])

[k(u) : k] € {1,4,5,8,10,12,16,20, 24, 40, 48, 60, 72, 120}.

(iv) Forn =5, 3u = 2’'/z such that [k(u) : k] € {1, 5,6, 10, 15, 30, 40, 55
(cf. [27]).

A similar finite list exists for any order.

In order to compute the minimal polynomial P(u) of u = z’/z, we note
that G permutes the roots of P(u) and sends the logarithmic derivative
of a solution into the logarithmic derivative of a solution. This gives the
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following form

P(u) U™ by ™ L+ biu+ b

(e-3)
i=1 %

= u" - —(H%l Zi)lum_l + ..+ ﬁ z_{

[lizy 2 iy F

where z; are solutions of L(y) = 0. In particular, the coefficient b,,_1
is the logarithmic derivative of a product of m solutions and one can
show that this condition is a necessary and sufficient condition for the
existence of a liouvillian solution [25, 28, 29).

In order to compute b,,_1, one constructs a linear differential equation
L®™(y) whose solution is spanned by the products of length m of so-
lutions of L(y) = 0. We start with an arbitrary product z = z122... 2,
where z; are solutions of L(y) = 0. Taking derivatives of z we obtain
expressions of the form zii‘)zém b, Using L(y) = 0 as a rewrite
rule, we can replace derivatives of z of order > n by linear combina-

tions over k of lower order derivatives of z. After (":’f;l) derivations

the ("t ") + 1 expressions 2(*) are all linear combinations of at most

("Tffl_ 1) unknowns and will therefore be linearly dependent over k. The

linear combination involving the smallest order of derivation of z is called
the m-th symmetric power of L(y) and is denoted LO™(y).

The order of the linear differential equation L@m(y) grows very fast
and it can be difficult to compute.
For second order equations L(y), however, the order of LO™(y) is always
m + 1 and therefore maximal. In this case, L@m(y) can be computed
using a simple recurrence [30] :

Example 2.5.4 Consider L(y) = y" + ry (where r € k). Then setting

LO(y) = Y,
Li(y) = v,
Lini(y) = Li(y) +i(m—i+1)rLi—1(y).

We obtain Ly,41 = LOm

2.5.2 Liouwillian solutions of second order equations

The solution of second order equations is simplified by the fact that sym-
metric products are always of maximal order and that any solution of a
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symmetric product is a product of solutions. A very efficient algorithm
is due to Kovacic [25] and we present a slight improvement of this al-
gorithm [28] where the computation of exponential solutions is replaced
by the computation of rational solutions whenever possible:

(i) Factor L(y) by computing exponential solutions. A non trivial
exponential solution gives a liouvillian solution. A second inde-
pendent liouvillian solution can be obtained by the method of
variation of the constants.

(ii) If L(y) is not of the form y” + ry (i.e. if a; # 0), replace y by
y- e/ =7, in order to obtain an equation of the form y” + ry
(where r € k) which we denote again by L(y). (The change of
variable is a bijection which transforms liouvillian solutions into
liouvillian solutions.)

(iii) For m € {4,6,8,12} (in this order!) :

o Compute rational solutions f of L@m(y) =0
e If a non trivial rational solution f exists, then

—set by,_1 = ——‘?,
— compute the other coefficients b; of P(u) using the recurrence

() :

bn=1,  by1=-L
_} . ; )
b, = bz+bm_1b,-.i-7"(2+1)bz+1, m—1>i>0
m—1+1

— return an irreducible factor of the polynomial P(u)
Otherwise try the next m

(iv) If no m produces a liouvillian solution, then there are no such
solutions.

For higher order equations, the computation is more difficult and
methods can for example be found in [31, 29, 32]. An important ob-
servation is that for m € {6,8,12}, the solutions are in fact algebraic
of known algebraic degree. In this case, it is possible to compute the
minimal polynomial of a solution instead of the minimal polynomial of
a logarithmic derivative [33, 34].

An alternative efficient algorithm, using the above and Klein’s method
for computing algebraic solutions of second order differential equations
via hypergeometric functions, is given in [35, 36].
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Example 2.5.5 In the decomposition of the operator L of our leitmotiv
example, the following second order equation remained to be solved :

3 (62-13) , 3 852%—367x+402

La(y) :=y”+§—(:c—2)(:c—-l)y + 16 (z—2)(x 1) y=0

The steps in the above algorithm are

(1) La2(y) is irreducible (it was one of the irreducible factors in section

2.4.1)
(ii) Lo(y) is not of the form y" + ry, therefore we replace y by

y-el F=y@-2"@-1F (2.4)

and obtain the equation
3 22-32+3

Ly)=y"+ 6 my

(iii) We consider the first case m = 4 and compute L@4(g/) :

5y, 15 (2 =32+3) y(s)_g(213—912+17m—12)y,,
4 (x-2)%(x-1)° 8 (@-2°@-1)°

45 22* —122° +-332% — 452+ 24
I G

45 22° —152* + 5423 — 10822 + 113z — 48
4 (-2)°(@-1)°

Y

There is a two dimensional space of rational solutions with basis:
[z(z-2)(x—1), (x—2)(z-1)].

Taking f = x(x — 2) (x — 1) the recurrence (fm) constructs the
following irreducible polynomial :

P = ui- (2—6x+3x2)u3+§(9x3—35x2+43x—16)
z(x—2)(r—1) 8 (x—1)2(z—2)%zx
27z* — 153 2% + 31922 — 2887 + 94
B 16z (x —2)3 (z —1)3
812° — 594z + 1723 2% — 2466 2% + 1737 x — 480
+ 256 (2 —2)' (= 1)*z

u

u
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Note that for any choice of (c1,c2) where not both are zero, the recur-
rence will construct a polynomial for u of degree 4 from f = ¢y z(x —
2)(x — 1) + ca(x — 2) (x — 1). For almost all values of those c¢;, the re-
sulting polynomial of degree 4 will be irreducible and define an algebraic
function w. However, for 3 families of values of (c1,cz), the resulting
polynomial will be reducible and in fact will be the square of an irreducible
polynomial of degree two ([37, 38, 28]). Here, those values (computed
via the discriminant of P for the variable u) are

{c1=0}, {ca=-2c1}, {ca=—4c1}.

Indeed, for ¢; =0, we get

p_ (=3 322 -9z+7 |\’
B 2(z—1)(x—-2) 16(z—2)2(z—1)2
Both the degree two irreducible factor of P or the irreducible polynomial
Py can be used to proceed. In the following we will use Py.
In order to undo the variable change (2.4) and produce a solution for

our original equation L, we replace u by v = v + % % in the

equation P(u) = 0. Computing the expression exp([v) by computing
the integral and performing the simplification, we obtain two algebraic
solutions of L(y) = 0 which are a basis of the solution space:

(x—2)Vx-2y-1+z
(-1+2)°

(x—2)Vz+2V/-1+=x

(-1+2)°

Ya = and  ys =

2.6 Brief conclusion

We have presented and illustrated algorithms for rational, exponential
and Liouvillian solutions of linear differential equations. Those are pre-
cisely the solutions that can be expressed using solutions of differential
equations of order at most one. One may push further the class of admis-
sible solutions, for example using solutions of equations of other orders
and, eventually, compute the differential Galois group (i.e all differential
relations between the solutions). But this is beyond the modest purpose
of this survey; interested readers are referred to the lovely set of notes
[1] and the corresponding fundamental book [2].

These methods have applications in handling holonomic functions,
establishing transcendence properties of numbers, and many others ; a
striking application today is the application of constructive differential
Galois theory to integrability of dynamical systems [39].
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It should also be mentioned that the theory extends beautifully to dif-

ference or g-difference equations; interested readers may enjoy consulting
[40] or [41].
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3.1 Introduction

Factorization of systems of differential equations was first studied for the
case of a single linear ordinary differential equation (LODE) with linear
ordinary differential operator (LODO) of the form

L:fO(Z)Dn+f1(Z)Dn_1++fn(x)7 D =d/dx, (3.1)

where the coefficients fs(z) belong to some differential field K. Fac-
torization is a useful tool for computing a closed form solution of the
corresponding linear ordinary differential equation Ly = 0 as well as de-
termining its Galois group (see for example [44, 45, 52] and the paper of
M. Singer in this volume). For simplicity and without loss of generality
we suppose that operators (3.1) are reduced (i.e. fo(z) = 1) unless we
explicitly state the reverse. The most popular case of the differential
field K = Q(x) of rational functions with rational or algebraic number
coefficients is a nontrivial example which is well investigated and will be
considered hereafter when we discuss any constructive results.

In this paper we give a review of the current state of the theory of
factorization of ordinary and partial differential operators and even more
generally, of systems of linear differential equations of arbitrary type
(determined as well as overdetermined). We start with the elementary
algebraic theory of factorization of linear ordinary differential operators
(3.1) developed in the period 1880-1930. After exposing these classical
results we sketch more sophisticated algorithmic approaches developed
in the last 20 years. The revival of this theory in the last two decades is
motivated by the development of powerful computer algebra systems and
implementation of nontrivial algebraic and differential algorithms such
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as factorization of polynomials and indefinite integration of elementary
functions.

The main part of this paper will be devoted to modern generalizations
of the factorization theory to the most general case of systems of linear
partial differential equations and their relation with explicit solvability
of nonlinear partial differential equations based on some constructions
from the theory of rings, the theory of partially ordered sets (lattices)
and that of abelian categories. Many of the results of this paper may
be exposed within the framework of the Picard-Vessiot theory. But
we follow a much simpler algebraic approach in order to facilitate the
aforementioned generalizations.

The proper theoretical background for the simplest case—factorization
of linear ordinary differential operators with rational coefficients—was
known already in the end of the XIX century. Paradoxically, mathe-
maticians of that epoch had developed even a nontrivial (theoretical)
algorithm of factorization of such operators [4]! A review of this theory
can be found in [39]. In contrast to the well-known property of unique-
ness of factorization of usual commutative polynomials into irreducible
factors, a simple example D? = D-D = (D+1/(z—¢))-(D—1/(z—¢))
shows that some LODO may have essentially different factorizations
with factors depending on some arbitrary parameters. Fortunately ac-
cording to the results by E. Landau [26] and A. Loewy [28, 29] exposed
below all possible factorizations of a given operator L over a fixed dif-
ferential field have the same number of factors in different expansions
L=Ly--+--Ly=1L;---- L, into irreducible factors and the factors
Ls, L, are pairwise “similar”. (Hereafter we always suppose the order
of factors to be greater than 0: ord(L;) > 0, ord(L;) > 0). We out-
line the main ideas of this classical theory in Section 3.2. For simplicity
we discuss here only the case of differential operators; a generalization
to the case of a general Ore ring (including difference and g-difference
operators, see [6, 8]) is straightforward.

Subsequent Sections are devoted to different aspects of the theory of
factorization of linear partial differential operators.

3.2 Factorization of LODO

The basics of the algebraic theory of factorization of LODO were essen-
tially given already in [28, 29], [31]—[34]. Algebraically the main results
are just an easy consequence of the fact that the ring K[D] of LODO
with coefficients in a given differential field K is Euclidean: for any
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LODO L, M there exist unique LODO Q, R, @1, R; such that
L=Q-M+R, L=M-Q1+R;, ord(R) < ord(M), ord(Ry) < ord(M).

For any two LODO L and M using the right or left Euclidean algorithm
one can determine their right greatest common divisor rGCD(L, M) =
G,ie. L =L,-G, M = M;-G (the order of G is maximal) and their right
least common multiple TLCM (L, M) = K,i.e. K =M -L=1-M (the
order of K is minimal) as well as their left analogues IGCD and ILCM.
All left and right ideals of this ring are principal and all two-sided ideals
are trivial. Operator equations

X-L+Y -M=B, L-Z+M-T=C (3.2)

with unknown operators X, Y, Z, T are solvable iff rGCD(L, M) di-
vides B on the right and IGCD(L, M) divides C on the left. We say
that an operator L is (right) transformed into L1 by an operator (not
necessarily reduced) B, and write L 5, L,, if rGCD(L,B) = 1 and
K =rLCM(L,B) = L1-B = B - L. In this case any solution of Ly =0
is mapped by B into a solution By of L1y = 0. Using (3.2) one may find
with rational algebraic operations an operator B; such that L; B, L,
B; - B = 1(modL). Operators L, Ly will be also called similar or of the
same kind (in the given differential field K). So for similar operators the
problem of solution of the corresponding LODE Ly = 0, Lyy = 0 are
equivalent. One can define also the notion of left-hand transformation
of Lby Binto L1: K =ILCM(L,B) = B-L; = L- B;. Obviously left-
and right-hand transformations are connected via the adjoint operation.
Also one may prove ([33]) that two operators are left-hand similar iff they
are right-hand similar. A (reduced) LODO is called prime or irreducible
(in the given differential field K) if it has no nontrivial factors aside from
itself and 1. Every LODO similar to a prime LODO is also prime. Two
(prime for simplicity) LODO P and @ are called interchangeable in the
product P - @ and this product will be called interchangeable as well if
P-Q=Q1 P, Q1 # P, P #Q. In this case P is similar to P;, @ is
similar to Q1 and P, =, P.

Theorem 1 (Landau [26] and Loewy [28]) Any two different de-
compositions of a given LODO L into products of prime LODO L =
Py P, =Py P, have the same number of factors (k = p)
and the factors are similar in pairs (in some transposed order). One
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decomposition may be obtained from the other through a finite sequence
of interchanges of contiguous factors (in the pairs P; - Piyy).

All definitions here are constructive over the differential field of ratio-
nal functions K = Q(x): either using the Euclidean algorithm or finding
rational solutions of LODO one can determine for example if two given
LODO are similar or find all possible (parametric) factorizations of a
given LODO with rational functional coefficients [1, 6, 7, 48].

The Landau-Loewy theorem also has the useful following ring-theoretic
interpretation. Namely, every L € K[D] generates the corresponding left
ideal |L); L; divides L on the right iff |L) C |L1). If we have a factor-
ization L = L;--- Ly then we have a chain of ascending left principal
ideals |L) C |Lo---Ly) C |Ls---Lg) C ... C |Lg) C |1) = K[D]. If the
factors Ly are irreducible, the chain is maximal, i.e. it is not possible to
insert some intermediate ideals between its two adjacent elements. The
Landau-Loewy theorem is nothing but the Jordan-Hélder -Dedekind
chain condition:

Theorem 2 Any two finite mazimal ascending chains of left principal
ideals in the ring K[D] of LODO have equal length.

Similarity of irreducible factors can also be interpreted in this approach.
An even more general lattice-theoretic interpretation turned out to be
fruitful for a generalization of this simple algebraic theory for the case
of factorizations of partial differential operators [49]. Namely, let us
consider the set of (left) ideals in K[D] as a partially ordered by inclusion
set M (called a poset). This poset has the following two fundamental
properties:

Property I) for any two elements A, B € M (left ideals!) one can find
a unique C' = sup(A4, B), i.e. such C that C > A, C > B, and C is
“minimal possible”. Analogously there exists a unique D = inf(A, B),
D < A, D < B, D is “maximal possible”.

Such posets are called lattices [20]. sup(A, B) and inf(A, B) corre-
spond to the GCD and the LCM in K[D].

For simplicity (and following the established tradition) sup(A4, B) will
be hereafter denoted as A + B and inf(A, B) as A - B;

Property II) For any three A, B, C € M the following modular identity
holds:

(A-C+B)-C=A-C+B-C

Such lattices are called modular lattices or Dedekind structures.
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As one can prove, modularity implies the Jordan-Holder-Dedekind
chain condition: any two finite maximal chains L > L; > --- > Ly >0
and L > M; > --- > M, > 0 for a given L € M have equal lengths:
k = r (the same for ascending chains). For the interpretation of the
notions of similarity, direct sums, Kurosh & Ore theorems on direct
sums cf. [49].

But even more fruitful for generalizations is the following categorical
interpretation of similarity of LODO and the Jordan-Holder-Dedekind
chain condition. Namely, let us consider the following abelian category
LODO of LODO.

The objects of LODO are reduced operators L = D™ + a;(z)D"" 1 +
...+ an(z), a; € K. One may ideally think of (finite-dimensional!) the
solution spaces Sol(L) of such operators in some sufficiently large Picard-
Vessiot extension of the coefficient field as another way of representation
of an object in LODO. This helps one to understand the meaning of
some definitions below, but one should remember that these solution
spaces are not constructive unlike the objects-operators.

The morphisms Hom(L, L1) in this category are constructively de-
fined as a not necessarily reduced LODO B such that L, - B =C - L
for some other LODO C'. Non-constructively this B may be seen as a
mapping of solutions of L into solutions of L;. Note that all operators
here have coefficients in some fized differential field K. Two operators
B;, B; generate the same morphism iff By = Ba(mod L). Also we
should remark that this definition is not equivalent to the definition of
a transformation of operators L A, L, introduced earlier, because for
morphisms:

1) B and L may have common solutions, i.e. a nontrivial rGCD(B, L).
This means that the mapping of the solution space Sol(L) by B may
have a kernel Sol(rGCD(B, L)). The morphism is not injective in this
case.

2) The image of the solution space Sol(L) may be smaller than Sol(L1).
The morphism is not surjective in this case.

Algebraically this means that Ly - B=C - L # rLCM (B, P).

Similarity of operators L and L; now simply means isomorphism of
the objects L and L; in this category.

The following fact is a direct corollary of our representation of this
category as a subcategory of the category of finite-dimensional vector
spaces and linear mappings preserving direct sums, products etc.:
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Theorem 3 The category LODO is abelian.

Among the many useful results for abelian categories (cf. for example
[16, 18]) we need the following

Theorem 4 Any abelian category with finite ascending chains satisfies
the Jordan-Hdlder property.

This will serve us as a maximal theoretical framework for an algebraic
interpretation and generalization of the Landau-Loewy theorem for the
case of systems of linear partial differential equations below. Again there
exist notions of direct sums, Kurosh-Ore theorems on direct sums and
the powerful technique of modern homological algebra for abelian cate-
gories [16, 18]. We will see below that this rather high level of abstraction
allows a very natural generalization of the definition of factorization for
arbitrary systems of linear partial differential equations (LPDE).

3.3 Factorization of LPDO

In contrast to the case of ordinary operators, two main results are seem-
ingly lost for LPDO: the Landau-Loewy theorem and the possibility to
use some known solution for factorization of operators. In the case of
a LODO L obviously if one has its solution L¢ = O then one can split
off a first-order right factor: L = M - (D — %/) For a LPDO, even
if one knows the complete set of solutions, the operator may not be
factorizable, as the following classical examples show:

Ezxample 1. The equation Lu = (Dsz — (—;f—m) u = 0 with D, =
0/0x, D, = 0/0y has the following complete solution:

2(F(z) + G(y))

/ /
DT @) + G ),

Lu=0&u=—
where F(z) and G(y) are two arbitrary functions of one variable each.
On the other hand, as an easy calculation shows, the operator L can-
not be represented as a product of two first-order operators (over any
differential extension of the given coefficient field K = Q(z,y)).

Ezxample 2. The equation Lu = (Dsz — ﬁg) u = 0 again has
the following complete solution:

u o L2F@) +Gy)  6(F(2) +G'(y)

(z +y)? zty +F'(2) +G"(y), (3.3)
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but the operator is again “naively irreducible”. More generally, the
equation
c
Lu=1ugy — ———u =0, ¢ = const 3.4
SR 4
has a complete solution in an “explicit” form similar to (3.3) iff ¢ =
n(n + 1) for n € N. In this case it has a complete solution in the form

u=coF +c1F + ... 4 caF™ +doG + di1G' + ...+ dp1 G"HY (3.5)

with some definite ¢;(x,y), d;(x,y) and two arbitrary functions F(z),
G(y)-

Only for ¢ = 0 is the corresponding operator “naively reducible”:
L=D;-D,.

The solution technology used here is very old and can be found in
[9, 19] under the name of Laplace transformations or Laplace cascade
method: after a series of transformations of (3.4) one gets a naively
factorizable LPDE!

Another unpleasant example is also ascribed in [5] to E. Landau: if

P=D,+zD,, Q=D,+]1,

R=D2+2D;Dy+ Dy + (2 + z)Dy, (36)

then L =QoQoP = Ro(@. On the other hand the operator R is abso-
lutely irreducible, i.e. one cannot factor it into a product of first-order
operators with coefficients in any extension of Q(z,y). So there seems to
be no hope for an analogue of Landau-Loewy theorem for decomposition
of LPDO into products of lower-order LPDO.

We see that a “naive” definition of a factorization of a LPDO as its
representation as a product (composition) of lower-order LPDOs lacks
some fundamental properties established in the previous Section for fac-
torization of LODO.

Recently [49] an attempt to give a “good” definition of generalized
factorization was undertaken. In the next subsection we only briefly
sketch the ideas of this approach and describe its nontrivial relation to
explicit integrability of nonlinear partial differential equations.

3.3.1 General theory of factorization of an arbitrary single
LPDO, ring-theoretic approach

Our goal in [49] was to define a notion of factorization with “good”
properties:
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e Every LPDO L shall have only finite chains of ascending generalized
factors. In particular D, should be irreducible.

e Jordan-Holder property: all possible generalized factorizations of a
given operator L have the same number of “factors” in different ex-
pansions into irreducible factors and the “factors” should be pairwise
“similar” in such expansions.

e Existence of large classes of solutions should be related to factoriza-
tion.

e The classical theory of integration of LPDO using the Laplace cascade
method should be an integral part of this generalized definition.

An obvious extension of the definition may be suggested if one would
use ascending chains of arbitrary (not necessary principal) left ideals
starting from the left ideal generated by the given operator:

|ILych CclC...CI C|l). (3.7)

Unfortunately one can easily see that even for the operator D, we
have such chains, and they have unlimited length: |D.) C D, Dy') C
|Dz, D~') C ...|Dg, Dy) C [1)! So we shall take some special class of
ideals, more general than the principal ideals, but much less rich then ar-
bitrary left ideals. In [49] we gave a definition of such a suitable subclass
of left ideals called divisor ideals.

For such special left ideals of the ring of LPDO:

e chains (3.7) will be finite and different maximal chains for a given
L have the same length: if |[L) C [y C I, C ... C I, C |1), |L) C
Jy CJ2C...C Jy C 1), then k = m and one can prove a natural
lattice-theoretic “similarity” of “factors” in the two chains.

e Irreducible LODO will be still irreducible as LPDO.

e For dim = 2, ord = 2 (that is for operators with two independent
variables of order two) a LODO is factorizable in this generalized
sense (i.e. having a nontrivial chain (3.7)) iff it is integrable with the
Laplace cascade method. We describe this cascade method below in
subsection 3.3.3

e Algebraically, the problem is reduced from the ring Q(z,y)[Dq, Dy
to factorization in rings of formal LODO with noncommutative co-
efficients Q(z,y, D;)[D,] and/or Q(z,y, Dy)[D] (Ore quotients); in
these rings all left and right ideals are again principal ideals.

The details, rather involved, may be found in [49]. This approach nev-
ertheless suffers from the following problems:
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e The definition of divisor ideals given in [49] is very technical, not
intuitive.
e No algorithm for such generalized factorization is known.

A generalization of this ring-theoretic approach to systems of LPDE was
proposed recently by M. Singer. Another ring-theoretic approach was
considered in [23].

In the next subsection we propose a different, much more intuitive
definition of generalized factorization.

3.3.2 General theory of factorization of arbitrary systems of
LPDE, approach of abelian categories

The Abelian category SLPDE of arbitrary systems of LPDE is defined
by its objects which are simply systems

Lijuy + ...+ Lisus =0,
1 1s%s Lij EQ(l’l,...,J}n)[DI],...,Dz"],

Uk = UR(T1,-- -, Tn)-
Lptuy + ...+ Lysug =0, * k(1 n)

(3.8)
A morphism P : S — Q of two systems is defined as a matrix of differ-
ential operators

v = Priug + ...+ Prsus,
P:¢ - (3.9)
VUm = Pm1U1 + ...+ Pmsus,

P € Q(z1,...,2,)[Dg,, ..., Dy,] with the condition that any solution
set {u1,...,us} of the source system (3.8) is mapped into a subspace of
the solution space {v1,...,um} of the target system

Muuy + ...+ Mypvy, =0,
1 ImZm Mij EQ(wl,...,xn)[DII,...,DI"]
Vg = 0(T1,. .., Tn)-

Q:

Mqlvl + ...+ qu’l)m =0,
(3.10)
The standard differential Grobner technique (originally developed in the
beginning of the XX century as the so called Janet-Riquier theory [24, 37,
38, 40]) makes this definition constructive: (3.9) is a morphism mapping
(3.8) to (3.10) iff for any i the equation } ., M;; Pjrux = 0 is reducible

to zero modulo the equations of the system (3.8).
Again, it is easy to see that this category is abelian: for this it
is enough to check that SLPDE is embeddable into the category of
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(infinite-dimensional) vector spaces and linear morphisms and this em-
bedding preserves direct sums, products etc.

It seems natural to refer to Theorem 4 to transfer the many proper-
ties of factorization proved for the category LODOQO in Section 3.2 to the
case of the category SLPDE. Unfortunately this is not so simple: the
ascending chains of monomorphisms are infinite in general: the same ex-
ample |D;) C |Dg, DJ') C |Dg, D*™') C ... |Dg, Dy) C |1) makes this
obvious. The solution to this problem is given by the standard construc-
tion of a Serre-Grothendieck factorcategory. We refer to [13, 16, 18] and
especially to [17] for a detailed explanation of this important and gen-
eral construction. One of the important steps of this construction is the
construction of inverses of morphisms with “relatively small” kernels;
the objects are not formally changed in contrast to the ring-theoretic
construction of factorrings and factormodules. In our case we proceed
as follows: for a given (say, determined) system of LPDE of the form
(3.8) (with s = p), take the subcategory S,,—2 of (overdetermined) sys-
tems with solution space parameterized by functions of at most n — 2
variables. Then the Serre-Grothendieck factorcategory S/S,—_2 has fi-
nite ascending chains. Another remarkable feature of this factorcategory
is, as we mentioned above, the possibility to consider morphisms which
have kernels defined by systems from S, as invertible morphisms. This
may lead to a more general theory of Bicklund-type transformations (at
least for the case of linear systems), for example of transformations of
Moutard type ([9, 19]).

Now we can transfer all theoretical results proved in Section 3.2 to the
case of the factorcategory §/S,—2 and provide a theoretical foundation
for the factorization theory of arbitrary linear systems of LPDE.

The obvious drawback still lies in the absence of algorithms for such
a generalized factorization. We give an overview of currently known
numerous partially algorithmic results in the next Sections 3.3.3-3.3.5.

3.3.3 dim = 2, ord = 2: Laplace transformations and Darboux
integrability of nonlinear PDEs

Here we expose the basics of the classical theory [9, 15, 19], which is
applicable to hyperbolic linear partial differential equations of order two
with two independent variables. For simplicity only the case of an equa-
tion with straight characteristics will be discussed here:

Lu= Ugy + [L(ZL', y)ua‘ + b(l’, y)uy + C(l’, y)u=0. (311)
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The more general case can be found in [19, 2, 50]. If one of the Laplace
invariants of (3.11) h = a; + ab — ¢, k = b, + ab — c vanishes, one can
“naively” factorize the operator on the Lhs. of (3.11): k=0= L =
(Dy+a)(Dz+b); h=0= L= (Dy+b)(Dy+a).

If h # 0, k # 0 then (3.11) is not factorizable in the “naive” sense. In
this case one can perform one of the two Laplace transformations (not to
be confused with Laplace transforms!) which are invertible differential
substitutions (isomorphisms in the category of SCPDE):

U= (DI +b) U(1)

| =

or
1
u= v (Dy + a) u(—y).

In fact each of the above substitutions is the inverse of the other up to a
functional factor. Each of these substitutions produces a new operator
of the same form (3.11) but with different coefficients and Laplace invari-
ants. The idea of the Laplace cascade method consists in application of
these substitutions a few times, obtaining the (infinite in general) chain

cot—= Lcyy «— Licyy « L — Ly — L —...(312)

In some cases (namely those cases considered as integrable in this ap-
proach) this gives us on some step an operator L;) with vanishing h;
or k(;). Then this chain cannot be continued further in the respective
direction and one can find an explicit formula for the complete solution
of the transformed equation; performing the inverse differential substi-
tutions we obtain the complete solution of the original equation (with
quadratures).
One of the main results of [49] is the following Theorems:

Theorem 5 L = D,-Dy—a(z,y)D,—b(z,y)Dy—c(z,y) has a nontrivial
generalized right divisor ideal (so is factorizable in the sense described
in Section 3.3) iff the chain (3.12) of Laplace transformations is finite
at least in one direction.

Theorem 6 L = D, - D, — a(z,y)D; — b(x,y)Dy — c(x,y) is a ILCM
of two generalized right divisor ideals iff the chain (3.12) of Laplace
transformations is finite in both directions.

This shows the meaning of the generalized definition of [49] and provides
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a partial algorithm for generalized factorization for equations of the form
(3.11).

Although practically efficient for simple cases, this method has the
obvious decidability problem: given an operator L, how many steps in
the chain (3.12) should be tried? Currently no stopping criterion is
known. As the example (3.4) shows, the number of steps in the chain
(equal to n for (3.4) in the integrable case ¢ = n(n + 1)) depends on
some subtle arithmetic properties of the coefficients.

There exists a remarkable link of the theory of Laplace transformations
to the theory of integrable nonlinear partial differential equations. This
topic was very popular in the XIX century and led to the development
of the integration methods of Lagrange, Monge, Boole and Ampere.
G. Darboux [10] generalized the method of Monge (known as the method
of intermediate integrals) to obtain the most powerful method for exact
integration of partial differential equations known in the last century.

Recently in a series of papers [2, 46, 55] the Darboux method was cast
into a more precise and efficient (although not completely algorithmic)
form. For the case of a single second-order nonlinear PDE of the form

Ugy = F(2,y,u, Uz, uy) (3.13)

the idea consists in linearization: using the substitution u(z,y) — u(z,y)+
ev(z,y) and cancelling terms with €, n > 1, we obtain a LPDE

Vzy = Avy + By + Cv (3.14)

with coeflicients depending on z, y, u, ug, uy. Equations of the type
(3.14) are in fact amenable to the Laplace cascade method, though cer-
tainly one needs to take into consideration the original equation (3.13)
while performing all the computations of the Laplace invariants and
Laplace transformations: (3.13) allows us to express all the mixed deriva-
tives of u via z, y, v and the non-mixed uz...z;, Uy...,). The following
statement can be found in [19]; recently it was rediscovered in [2, 46]:

Theorem 7 A second order, scalar, hyperbolic partial differential equa-
tion (8.13) is Darboux integrable if and only if the Laplace sequence
(3.12) for (8.14) is finite in both directions.

In [2, 46] this method was also generalized to the case of a general
second-order nonlinear PDE

F(z,y,u, Uz, Uy, Uga, Ugy, Uyy) = 0.
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3.3.4 dim =2, ord > 3: Generalized Laplace transformations

In [50] we proposed a generalization of the Laplace cascade method for
arbitrary strictly hyperbolic equations with two independent variables
of the form
Lu= Z pi,j(x,y)f);ﬁiu =0, (3.15)
i+j<n

as well as for n x n first-order linear systems
mn n
(Wi)e = Y ammlz,y)(vk)y + Y bin(z, y)vi (3.16)
k=1 k=1

with strictly hyperbolic matrix (a).
Here we demonstrate this new method on an example of the constant-
coefficient system

Dyuy = uy + 2ug + us,
Dyuy = —6u; + uz + 2us, (3.17)
(Dy + Dy)us = 12u; + 6ug + us.

It has the following complete explicit solution:
w1 = 20G(x) + ¢* (3F(y) + F'(y)) + exp L H(z — y),
ug = e¥G'(x) + 2¢*F'(y) — 2uq,
uz = Dyuy + 3up — 2(e¥G' () + 2e*F'(y)),

where F(y), G(z) and H(xz — y) are three arbitrary functions of one
variable each.

The solution technology (cf. [50]) for the details) is again a differential
substitution; in the case of the system (3.17) the transformation is given
by:

ﬂl = ui,
Uy = U + 22U, (318)
Uz = ((Dz + Dy)ul —up — 2ug — 4u1).
The transformed system has a triangular matrix and is easily integrable:
D;uz = us,
Dyz = 2T3 + s,
(D, + Dy)ul = U3 + 2Us + u;.
Again no stopping criterion for the sequences of generalized Laplace

transformations is known in the general case. For constant coefficient
systems an alternative technology was proposed by F.Schwarz (private
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communication, 2005): transform the system (3.17) into a Janet (Grobner
normal form with term order: LEX, ug > us > uy,z > y:

Ul gry — Ul,zx T Ul,zyy — 3U1,:cy + 2ul,z —Upyy T+ 2Ul,y —uy =0,
U2y + Jup — 2“1,1 + 8u; = 07

U2z — U2 — %ul,zz - %ul,zy + 3ul,z + %Ul,y - %Ul =0,

ug + 2ug — U,z + UL = 0.

The first equation factors:

D2D, — D2 + D, D2 — 3D, Dy, + 2D, — D? + 2D, — 1

= (D + D, - 1)(Dy - 1)(Dz - 1)‘

So one can find u; easily and then the other two functions us and us
are obtained from the remaining equations of the Janet base producing
essentially the same solution (3.18).

Conjecture: For constant-coefficient systems this Grobner basis tech-
nology is equivalent to the generalized Laplace technology.

3.3.5 dim > 3, ord = 2: Dint transformations

In [11] another simple generalization of Laplace transformations formally
applicable to some second-order operators in the space of arbitrary di-

mension was proposed. Namely, suppose that an operator L has its
principal symbol

Sym= " aii,(%)Ds,, Dx,,
i1+i2=2
which factors (as a formal polynomial in formal commutative variables
D,,) into product of two first-order factors: Sym = X;Xo (X; =
>, bij(£) Dy, are first-order operators) and moreover the complete op-
erator L may be written at least in one of the characteristic forms:

L= (X1X2 + 01X1 +042X2 —}-013)

NN A A 3.19
L= (X2X1 +a1X, +52X2+Ot3), ( )

where a; = a;(z,y). Since the operators X, do not necessarily commute
we have to take into consideration in (3.19) and everywhere below the
commutation law

[leXz] = X1X2 - X2X1 = P(l’,y)Xl +Q(x, y)X2~ (3.20)

. This is very restrictive since the two tangent vectors corresponding to
the first-order operators X; no longer span the complete tangent space
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at a generic point (Zp). (3.20) is also possible only in the case when
these two vectors give an integrable two-dimensional distribution of the
tangent subplanes in the sense of Frobenius, i.e. when one can make a
change of the independent variables () such that X; become parallel to
the coordinate plane (z,,z2); thus in fact we have an operator L with
only Dg,, D, in it and we have got no really significant generalization
of the Laplace method. If one has only (3.19) but (3.20) does not hold
one cannot perform more than one step in the Laplace chain (3.12) and
there is no possibility to get an operator with a zero Laplace invariant
(so naively factorizable and solvable).

Below we demonstrate on an example, following an approach proposed
by U. Dini in another paper [12], that one can find a better analogue
of Laplace transformations for the case when the dimension of the un-
derlying space of independent variables is greater than two. Another
particular special transformation was also proposed in [3], [54]; it is
applicable to systems whose order coincides with the number of inde-
pendent variables. The results of [3], [54] lie beyond the scope of this
paper.

Let us take the following equation:

Lu=(D;Dy+x2D;D, — D,)u =0. (3.21)

It has three independent derivatives D,, Dy, D,, so the Laplace method
is mot applicable. On the other hand its principal symbol splits into
product of two first-order factors: £1&2 + 26163 = &1(€2 + x€3). This
is no longer a typical case for hyperbolic operators in dimension 3; we
will use this special feature, introducing two characteristic operators
X, = D,, X, = Dy + zD,. We have again a nontrivial commutator
[Xl, X'g] =D, = X3. The three operators Xl span the complete tangent
space at every point (z,y, z). Using them one can represent the original
second-order operator in one of two partially factorized forms:

L=XX\ - X3 =X:1Xo - 2X3.

Let us use the first one and transform the equation into a system of two
first-order equations:

X1u =,

X 3.22
X3u = X2’U. ( )

Lu=0<=>{

Cross-differentiating the left hand sides of (3.22) and using the obvious
identity (X1, X3] = [Ds,D.] = 0 we get X1Xov = Dy(Dy + zD,)v =
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X3v = D,v or 0 = Dy(Dy + zD,)v — D,v = (D;Dy + D, D,)v =
(D, + xD,)D,v = X2 X1 0.

This is precisely the procedure proposed by Dini in [12]. Since it
results now in another second-order equation which is “naively” factor-
izable we easily find its complete solution:

v= /qzﬁ(x,xy —z)dz +Y(y, 2)

where ¢ and 1) are two arbitrary functions of two variables each; they
give the general solutions of the equations Xq¢ = 0, X;9 = 0.
Now we can find u:

u:/(vdx+(Dy+$Dz)UdZ) +6(y)’

where an extra free function 6 of one variable appears as a result of
integration in (3.22).

So we have seen that such Dini transformations (3.22) in some cases
may produce a complete solution in explicit form for a non-trivial three-
dimensional equation (3.21). This explicit solution can be used to solve
initial value problems for (3.21).

Dini did not give any general statement on the range of applicability
of his trick. In [51) we have proved the following

Theorem 8 Let L = 3, iy oy aiji(2,y,2) D D) D% have factorizable
principal symbol: 37, .y, aik (2, y, 2)DLDI D = S5y (mod lower-
order terms) with generic (non-commuting) first-order LPDO S;, Sz.
Then there exist two Dini transformations Ly, L(_1y of L.

Proof One can represent L in two possible ways:
L=55+T+ a(z,y,z) = S$0Sy + U + a(z,y, z) (3.23)

with some first-order operators T, U. We will consider the first one
obtaining a transformation of L into an operator L(j) of similar form.

In the generic case the operators Sy, So, T span the complete 3-
dimensional tangent space in a generic point (z,y,z). Precisely this
requirement will be assumed to hold hereafter; operators L with this
property will be called generic.

Let us fix the coefficients in the expansions of the following commu-
tators:

[S2,T] = K(z,y,2)S1 + M(2,y,2)S2 + N(z,y,2)T. (3.24)
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[Sla S2] = P(l‘, Y, Z)S] + Q(.’L’, Y, Z)SQ + R(.’L‘, Y, Z)T (325)

First we try to represent the operator in a partially factorized form:
= (81 +@)(S2 +06)+ V+b(m y, z) with some indefinite a = a(x, vy, 2),
,6’ B(z,y, z) and V=T-88 —aSs,b=a—af - Sl(ﬁ)
Then introducing v = (52 + B)u we get the corresponding first-order
system:

(S + B)u=v,

(V + b)u = — (51 + a)o. (3:26)

Lu =0 {
Next we try to eliminate u by cross-differentiating the left hand sides,
which gives

[(V 4 ), (S2 4+ B)u = (S2 + 5)(S1 + a)v + (V + b)o. (3.27)

If one wants u to disappear from this new equation one should find
out when [(V + b),(S2 + 3)]u can be transformed into an expression
involving only v, i.e. when this commutator is a linear combination of
just two expressions (S + 8) and (V + b):

[(V +b),(S2 + B)] = u(z,y,2)(S2 + B) + v(z,y,2)(V +b).  (3.28)

This is possible to achieve choosing the free functions a(z, y, 2), 3(z, y, 2)
appropriately. In fact, expanding the left and rlght hand sides in (3.28)
in the local basis of the initial fixed operators Sl, 5’2, T and the zeroth-
order operator 1 and collecting the coefficients of this expansion, one
gets the following system for the unknown functions «, 3, u, v

K + 8P — $53(8) = v,

M — Sy(a) + BQ = va — u,

N+ pBR=—

B51(B) — T(B) + Sa2(a) — BS2(a) — S52(51(8))
=—v(a—af - 5i1(8) -

After elimination of v from its first and third equations we get a first-
order non-linear partial differential equation for 3:

S5(8) = B?°R+ (N + P)B + K. (3.29)

This Riccati-like equation may be transformed into a second-order linear
PDE via the standard substitution 8 = S5(v)/v. Taking any non-zero
solution J of this equation and substituting u = va + 52(04) -0Q-M
(taken from the second equation of the system) into the fourth equation
of the system we obtain a first-order linear partial differential equation
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for o with the first-order term 35, (a). Any solution of this equation will
give the necessary value of . Now we can substitute [(V +b), (So+3)u =
w(S2 + Bu + v(V + b)u = pv — v(S; + a)v into the left hand side of
(3.27) obtaining the transformed equation Lyv = 0.

If we started the same procedure using the second partial factorization
in (3.23) we would find the other transformed equation L(_jyw =0. [

3.4 Other results and conjectures

The theory of integration of linear and nonlinear partial differential equa-
tions was among the most popular topics in the XIX century. An enor-
mous number of papers were devoted for example to transformations of
equations to an integrable form. In particular the papers [27, 35, 36] were
devoted to more general Laplace type transformations. Some of these
results were obtained in the framework of classical differential geometry;
cf. [14, 25] for a modern exposition of those results.

In addition to the problems studied above one should mention a class
of overdetermined systems of linear partial differential equations with
finite-dimensional solution space studied in [56, 30]. There an algorithm
for factorization of such systems was proposed.

Another topic popular in the past decade was the theory of “naive”
factorization, i.e. representation of a given LPDO as a product of lower-
order LPDO: in [22] an algorithm for such factorization was proposed
for the case of operators with symbol representable as a product of two
coprime polynomials. This result was developed further in [43].

From the theory of Laplace and Dini transformations the following
conjectures seem to be natural:

e If a LPDO is factorizable in the generalized sense, then its principal
symbol is factorizable as a multivariate commutative polynomial.

e If a LPDO of order n has a complete solution in a quadrature-free
form (8.5) then its symbol splits into n linear factors.
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The history of D-module theory starts in 1960-70s and is connected with
the names of Mikio Sato and Joseph Bernstein. Many well-known math-
ematicians, such as Kashiwara and Malgrange, contributed to the area
over the years. There is a long list of options for reading on the subject,
from which one can choose according to one’s liking and background.
A rather elementary text [8] needs no deep knowledge of algebraic ge-
ometry, deeper treatments can be found in [5, 6, 14], more specialized
introductions are provided by chapters of [24] (applications to hypergeo-
metric equations) and [12] (computation of local cohomology modules).

What we intend to provide here is a short primer covering the basics
of the algorithmic D-module theory. The D-modules are defined as left
modules over an algebra D of linear differential operators with either
polynomial coefficients or coefficients in the field of rational functions.

There are three parts: the first introduces the Weyl algebra and dis-
cusses its basic properties, the second is devoted to a “nice” subcate-
gory of the category of D-modules, the holonomic D-modules, the third
features applications of the theory and its algorithmic aspects to hyper-
geometric differential equations and local cohomology.

In what follows the base field k will always be assumed to have char-
acteristic 0. Lots of geometrically interesting concepts exist for the case
k = C; for simplicity the reader may limit his or her thinking to the com-
plex numbers. In computations, we utilize the smallest option: k£ = Q.
It still makes sense to talk about certain algorithms over other fields,
however, the current software implementations are limited to the field
of rational numbers and its finite algebraic extensions.

The ring of polynomials in n variables = (z1,...,z,) will be usually
denoted by either R or k[z] and the field of rational functions in the same
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variables by k(x). We shall use the multi-index notation for monomials,
e, z* =z - a2y € R for a € ZY,,.
The n-th Weyl algebra k{x, 8) is defined as the associative k-algebra

on 2n symbols ¢ = (z1,...,2,) and @ = (04, ...,0,) with the relations
TiT; =TTy, forall1 <i,57 <mn;
(%(% = 8]'81‘ for all 1 < i,j < n;
Oix; = x;0; forall1 <4,j <n, i#j7;
Oix; = x,0;+1 foralll<i<n.

The Weyl algebra, which for simplicity from now on will be referred to
as D, is isomorphic to the algebra of linear partial differential operators
with polynomial coefficients.

We let k(x)(0) stand for the algebra of linear partial differential oper-
ators with coefficients in k(x). Note that k(x)(8) = k(x) @[z D, where
D is considered as the left k[z]-module.

We assume multi-index notation for the monomials in D as well:
28 = ¢ ... g2 9P ... 8P € D. Note that the order of symbols
in the product is important — we will always write x; left of 0;. Let the
set of monomials be ordered with respect to an admissible ordering < ,
which means that

(i) the ordering < is total;
(ii) for o, 3,0/, 8',7,8 € Z%,

2 9P < :1:0"8'6( o potrghts < xa’+73ﬂ’+6;
(iii) 1= x°8° is the lowest monomial.
Every such ordering is a refinement of a weight ordering <, for some
weight w = (wz,wa) € Z,
228’ < 2% 9% & deg, x8° < deg, :c"‘laﬂ,,

where deg,, 28 =w, - a+wy-B € Z>g is the w-degree. Note that
the ordering <, is not total in general. Also to make it possible for 1
to be the minimal monomial in a refinement of <, it is required that
Wy +wp € Zgo

4.1 Weyl algebra

The main object of discussion in this part is the n-th Weyl algebra,

D = k<w,8> :k‘<1}1 ....”I)n,al 6n),
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defined in the introduction.

The Weyl algebra D belongs to the class of algebras of solvable type
defined in [13]. This means that for any two gencrators y and z of the
algebra, in our case {y,z} C {z1,...,%n,01,...,0n}, there exist ¢ € k
and a (noncommutative) polynomial p € D such that zy — cyz = p and
the monomials of p are all < yz. Here we can take ¢ = 1 for any y, z
and p = 0 unless y = x; and z = 0;, for some 1 < ¢ < n, in which case
p=1.

The monomials of D form the so-called PBW (Poincaré-Birkhoff-
Witt) basis meaning that every element @) € D can be written uniquely
as a finite linear combination of monomials,

Q= Y capz®d’, withcog€hand 0,8 €22,  (4.1)
a,ﬁel’z‘”

4.1.1 Ideals

As we mentioned before, the Weyl algebra D is isomorphic to the algebra
of linear partial differential operators and may be represented by its
natural action on an appropriate function space M. For instance, we
may take M to be polynomial functions R = k[z], rational functions
k(x), or the space of smooth functions C*: the action of generators of
D defines the action of the whole Weyl algebra:
Oif
8.’L‘i

The Weyl algebra is simple, i.e., the only two-sided ideals of D this
makes a good exercise to show — are trivial: 0 and D itself. In view of
this, in what follows we would consider only one-sided ideals of D. We
denote by (Q1,...,Qm) the left ideal of D generated by the operators
Qi,...,Qm €D.

In fact, the left ideal I = (Q1, ..., Q) is exactly the object one would
want to examine in order to study the system of linear PDEs

Q- f==Qm-f=0, (4.2)

where f is the unknown function. Indeed, the operators of I produce
equations that follow algebraically from the equations (4.2).

Here we give several examples of ODE translated into the ideals in
the first Weyl algebra D = C(z,d) accompanied by their solutions.

, for fe Mand 1 <i<n.

i f=azif, 0;i-f=
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Example 4.1.1 Cyclic ideals represent a single linear ODE. For in-
stance, I; = (0% — 8) corresponds to the equations with the space of
solutions spanned by functions 1, e and e~*. The solutions of ideal
I, = ((0 — 1)?) are spanned by e” and ze®.

Not all ideals in the first Weyl algebra are cyclic though: the ideal
I3 = (0,20 — 1) cannot be generated by one element. Its solution space
is one-dimensional and is spanned by the function x.

The following existence theorem is classical:

Theorem 9 Let Q- f = 0 be an ODE with Q = Z?:o a;(2)8" € D where
a;(z) € R = C[z] and aq(z) # 0.

Then the dimension of the space of holomorphic solutions in a simply
connected domain in C not containing zeroes of aq(x) equals d.

In case of the first Weyl algebra the rank of the system represented by I,
i.e., the dimension of its solution space, is easy to determine: the rank
is equal to the minimal order of a nonzero operator of I.

The rank can be determined algorithmically via the process of differ-
ential elimination. For example, take Iy = (8%, 20% 4+ 20 — 1), then by
an analogue of the Euclid division algorithm we get:

2(0%) — 0(x0* 4+ 20 — 1) = 26° + 0,
(0% + 20 — 1) — (20* + 0°) = —0* + 20 — 1,
(20 + 20 — 1)+ 2(=0* + 20 — 1) = 2°0 + 20 — x — 1.

Note that the last operator is of order 1. Moreover, by this reduction
process we can obtain also 9% and 20 — 1 proving that I3 = I4.

In general, using such reduction steps we can always compute a set of
minimal generators of the given ideal I C D of the form

fladl +Qla'”7fmadm +Qma

where d; > -+ > dm, f1,..., fm € k[z] \ {0}, Q1,...,Qm € D and
deg, Qi < d;, for all 1 < i < m; the generator f;0% + @Q; is minimal
in the sense that there is no g8% + Q' € I with g € k[z] \ {0} and
degy Q' < d; such that degg < deg f;.

Since it is tiring to do the computations in D by hand, the reader
might find useful computer algebra systems that can handle Weyl al-
gebras. In particular, the D-modules package [17] for Macaulay?2 [10]
provides all the functionality needed for our exposition.
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Example 4.1.2 Here is how one can play with a couple of examples
from above:

il : loadPackage "Dmodules";

i2 : D = makeWA(QQ[x]);

i3 : I3 = ideal (dx~2, x*dx-1);

o3 : Ideal of D

i4 : I4 = ideal (dx~3, x*dx~2+x*dx-1);

04 : Ideal of D

i5 : I3 == 14

o5 = true

The following is a command for computing the set of minimal genera-
tors.
i6 : entries gens gb I4

2
06 = {{dx , x*dx - 1}}

Of course, this computes a Grobner basis of the ideal, which is one of
the most central concepts of computational commutative algebra. It
turns out that one can make this concept work in the “slightly” non-
commutative case of algebras of solvable type, in particular, the n-th
Weyl algebra D.

We will get back to Grobner bases in Section 4.1.5.
There exists another extensive package for D-modules computations:
kan/sm1 [28].

4.1.2 Stafford’s theorem

Now consider an example in many variables: I = (01, 02,03), an ideal
in the third Weyl algebra

D= k<$1,$2,$3,81, 82,63>.

It turns out it is possible to generate I by only two elements.

Indeed, take P = x30; + 02 and @Q = 03, then it is easy to check
that QP — PQ = 01 € (P,Q). Now 0, = P — x50, € (P,Q), hence,
I=(PQ).

In fact, a problem that is considered hard in the ring of polynomials
— finding the minimal number of elements that generate an ideal — turns
out to be surprisingly trivial in the view of the following.



Introduction to D-modules 137

Theorem 10 (Stafford) Ewvery left ideal of the Weyl algebra can be
generated by two elements.

This has been proved in [25] and algorithmic proofs have been given in
11, 16].

Therefore, a non trivial ideal of the Weyl algebra is either principal,
which is easy to detect by computing a Grobner basis, or it is possible
to compute two elements that generate the whole ideal.

We have to remark, however, that such a “minimal” presentation is
not very useful for practical computations, since the degrees of a pair of
operators generating the whole ideal could be huge. To our knowledge,
there is no known bound for these degrees except a naive one that could
be derived by considering the complexity of the Grébner bases involved
in the algorithms of [11, 16].

4.1.3 Modules and homomorphisms

A k-linear space M is called a (left) D-module if there is a left action of
D defined on M.

Example 4.1.3 The following are left D-modules:

e The free module D" of rank r with D acting by the left multipli-
cation on every component of a vector in D";
e Equipped with the natural action of D,

the ring of polynomials k[x];
the field of rational functions k(x);
the ring of formal power series k{[z][;

the space of C*°-functions;

e The quotient D/I, where I C D is a left ideal, with the induced
action on cosets.

From the computational point of view we are able to deal only with
finitely generated D-modules. Note that several modules in Example 4.1.3
are not finitely generated: namely, k(x), k[[x]], and the space of C*°-
functions.

Let M = (my,...,m,) stand for a (left) D-module (finitely) generated
by my,...,m, € M. In algorithms M is often represented as a quotient
of a free D-module. To that end, one forms the module of left syzygies,

N:{Qlel+"'+Qrer6DT:lel+"'+Q7‘mr20}7
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where {e1,--- ,e,} is the standard basis of D”. Then the module D" /N
is isomorphic to M.

When D-modules are employed to study systems of linear PDE, the
first question one may ask is: what are the solutions? The concept of
the solution space is readily available in the language of D-modules.

Namely, to solve the system of represented by a cyclic D-module M; =
D/I in terms of the functional space represented by D-module M3 means
to describe the set of homomorphisms Homp (M;, M3).

This set has a structure of a k-linear space. Every element ¢ €
Homp (M, Ms) is defined by its value at the coset 1 € D/I; since ¢(1)
has to be annihilated by I, it is a solution to the corresponding system
of PDE.

Example 4.1.4 Let us go back to the ideals in Example 4.1.1: [} =
(8 — 8) and I, = ((8 — 1)®). According to the above-said, if M is the
space of smooth functions, then

Homp(D/I, M) = Span;,{e®,e™ ", 1},

Homp(D/I2, M) = Span,{e”, ze*}.

If we look for solutions in the ring of univariate polynomials k[z], then
Homp(D/I1,k[z]) = k,
Homp(D/Is, k[z]) = 0.

Unfortunately, we cannot compute with M, since it is infinitely gener-
ated. Here is what we can do for polynomial solutions, keeping in mind
that k[z] = D/(9).

i7 : I1 = ideal(dx~3-dx);
i8 : I2 = ideal((dx-1)"2);
i9 : DHom(I1l,ideal dx)

09 = {| -1 [}

09 : List

i10 : DHom(I2,ideal dx)
010 = 0

Let us be adventurous and look for solutions of I; in the D-module
D/I, i.e., compute Homp(D/I;,D/I5).
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i1l : s = DHom(I1,I2)
o1l = {| -2dx+2 |, | -12xdx+12x-28dx+40 |}

The output means that the space of solutions is two-dimensional, de-
spite us expecting only one copy of “ e* ” in D/I5.

The confusion is resolved by looking closely at the kernel of maps from
D to D/I5 defined by these two spanning solutions.

i12 : ker map(D~1/I2, D"1, s#0)
012

image | dx-1 |

1
012 : D-module, submodule of D
i13 : ker map(D~1/I2, D"1, s#1)
013

image | -dx+1 |

1
013 : D-module, submodule of D

Both solutions are, indeed, incarnations of “ ¢* ” in D/I5.

4.1.4 Filtrations and the associated graded algebra

For a weight w = (wgz,ws) € ZQZ’}, the collection of k-linear subspaces
F; ¢ D, where i € Zzo:

= @ ko
deg,, >80 <i
is called the filtration by the weight w. The union of F; equals the whole

of D and we can define gr D, the associated graded algebra, in the usual
way:
erD= P Fi/Fii,

iGZBU

where F_; = 0 is assumed.

Example 4.1.5 Two important examples of filtrations are
e the order filtration given by w = (0,1) = (0,...,0,1,...,1),
which filters the operators in D by the differential order,
e and Bernstein filtration w = (1,1) = (1,...,1,1,...,1), which
filters by the total degree.
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In both cases the associated graded algebra is commutative, since
z;,0; € Fy \ Fp, but their commutator [9;,z;] € Fo, 1 < ¢ < n. This
makes the noncommutative relations commutative in gr, D. In fact,
gr,, D is isomorphic to the algebra of (commutative) polynomials k[z, €]
where the generators & = (&1,...,&,) replace O after the natural map
gr, : D — gr, D is applied.

4.1.5 Grobner bases

Let < be an admissible ordering refining <,, for a weight w = (wz,ws) €
23} such that w, +wp € Z%. Recall that in this case gr,, D is isomorphic
to the commutative algebra k[x, €]. Let gr,, : D — gr,, D be the natural
projection.

Every element Q of the Weyl algebra can be written in the form (4.1),
where only finitely many monomials have nonzero coefficient. The image
under the map gr,, of the maximal such monomial with respect to the
ordering < is called the leading monomial and denoted Im Q € k[z, &].

We call a subset G C I a Gréobner basis of a left ideal I if

(ImG)=Im[:={lmQ:Q €I} C k[z,¢&].

A Grobner basis G is called reduced if its elements are monic, i.e., their
leading coefficients equal 1, and for every @ € G its leading monomial
is not divisible by Im P for any P € G\ {Q}.

Grdbner bases in the Weyl algebra possess most of the properties the
usual commutative Grobner bases have. In particular, the unique normal
form nfg(Q) of an element Q@ € D with respect to a Grobner basis G is
the result of the reduction (in any order) by the elements of G. At the
end of the reduction we have

nfe(Q)=Q mod I

and Imnfs(Q) not divisible by Im P, for any P € G.

One can look up the details of the division algorithm and a descrip-
tion of the basic Buchberger algorithm for computing a Groébner basis
in any introductory text on Grobner bases in polynomial rings; the cor-
responding algorithms for the Weyl algebra are virtually the same.

We have already computed one Grébner basis in Example 4.1.2. There,
two seemingly different ideals I3 and I4 turned out to be equal, simply
since they have the same reduced Grobner basis.

The applicability of Grébner bases is not limited to the comparison of
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ideals; more or less every application one can imagine in the commutative
world would have a counterpart for the Weyl algebras. In particular, we
may generalize the concept of Grobner bases to the submodules of free
D-modules and compute kernels of maps, syzygies, free resolutions in
ways very similar to the Grébner techniques in the case of modules over
polynomial rings.

Grobner bases methods in the Weyl algebra are the most straight-
forward and, therefore, the best developed in the range of differential
reduction algorithms devised for dealing with the systems of PDE by
means of differential algebra. The practical complexity of computing
Grobner bases in the Weyl algebras is definitely higher than that in
polynomial rings with the same number of variables, simply because
the basic operations, such as multiplication of an element in D by a
monomial, already require more effort than in the commutative case.

In view of that, it is a very surprising fact, that the theoretical worst
case complexities of Grobner bases in the Weyl algebras and the polyno-
mials rings are of the same order! Namely, assume that G is the reduced
Grobner basis of the ideal I of the n-th Weyl algebra D generated in
degrees less than d. It has been shown in [3] that there is an upper
bound on the degrees of elements in G that is doubly-exponential in the
number of variables 1, more precisely, the order of the bound is O(d?").

4.1.6 Dimension theory

To sketch the dimension theory for D-modules we fix the Bernstein
filtration on the Weyl algebra D introduced in Example 4.1.5. For sim-
plicity, we let M to be a cyclic (left) D-module presented as a quotient
M = D/I for some (left) ideal I C D. One can generalize the dimension
theory to any D-module; the reason for a rather restrictive assumption
of cyclicity will become apparent in Theorem 13.

The filtration on D induces filtrations on the ideal I and the quotient
M =D/I.

Theorem 11 Consider the function t — dimg My, t € Z>o, where M,
is the t-th component of the filtration on M.

Then for t > 0 this function is polynomial in t with rational coeffi-
cients.
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Proof For a proof of a more general statement see, for example, [12,
Theorem 5.18]. O

The polynomial above is known as the Hilbert polynomial and denoted
by Has(t). Suppose,

Hpr(t) = cqt? + lower terms,

then we define the dimension dim M to be d and the multiplicity e(M)
to be dlcg. Both numbers are positive integers.

We remark that these definitions could have been made by passing to
the gr D-module gr M and reusing the notions of dimension and multi-
plicity for a module over a commutative polynomial ring.

Since the dimension of the n-th Weyl algebra dim D = 2n, the dimen-
sion of its module dim M < 2n. Surprisingly, there is a lower bound
different from zero!

Theorem 12 (Bernstein) For a nonzero D-module M

n <dimM < 2n.

Proof For proof see, for instance, [5, 4.1]. O

It could be shown that the dimension defined by passing to the asso-
ciated graded algebra with respect to the filtration by any nonnegative
weight w is the same. In particular, the dimensions with respect to the
Bernstein filtration and the order filtration (see Example 4.1.5) are equal.
Theorem 12 for the order filtration is known as the weak fundamental
theorem of algebraic analysis.

4.2 Holonomic D-modules

Here we discuss the subcategory of D-modules that is “nice”: we say
that a D-module M over the n-th Weyl algebra D is holonomic if it is
finitely generated and either M = 0 or dim M = n, the lowest possible
dimension according to Theorem 12.

A system of PDE corresponding to a holonomic module is guaranteed
to have a finite-dimensional solution space. The computation of a basis
of the solution space of a holonomic D-module can be carried out in the
sense of the discussion preceding Example 4.1.4; algorithms for this are
provided in [29)].
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4.2.1 Holonomic = cyclic

For the first Weyl algebra D the choice for the dimension of a quotient
D-module M = D/I is between 0,1, and 2, the latter corresponding to
M = D. Therefore, if M nontrivial it is holonomic. For instance, the
D-modules D/I, and D/I; with I and I borrowed from example 4.1.1
are holonomic ideals describing ODEs.

The following is true for the n-th Weyl algebra for arbitrary n.

Theorem 13 Every holonomic D-module is cyclic.

Proof For a proof of a more general statement see [5, Theorem 8.18], a
constructive treatment and an algorithm to compute a cyclic generator
are given in [16]. ]

In the rest of our discussion we will be interested mostly in holonomic
ideals, and, for convenience, the reader may think they are represented
as quotients: e.g. M = D/I for some holonomic ideal I. Theorem 13
lets us do so without loss of generality.

Example 4.2.1 Let M = R®> = R® R ® R, where R = k[z] is the
ring of polynomials in n variables. M is equipped with a structure of a
D-module over the n-th Weyl algebra D, for R is a D-module.
Obviously dim M = n, therefore, M is holonomic. By Theorem 13
we can cook up a cyclic generator from the standard generators: e; =
10000,e=001®0,ande3 =000 1.
Consider

1, L,
V= §I1@x1 e1l= §z161+xleg+eg.

We have 0% - v = ey, then 8- (v — 220? - v) = ey, and, finally, e3 can be
obtained as a k-linear combination of v, e;, and es.
Hence, the vector v is a cyclic generator of M.

4.2.2 Category of holonomic modules

Holonomic D-modules form an abelian subcategory of the category of
D-modules.

Indeed, not only one can add morphisms of D-modules, but for a short
exact sequence of D-modules,

0-M —->M-—-M' -0,
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M is finitely generated if and only if M’ and M" are. Moreover, M is
holonomic if and only if M’ and M" are, therefore, this is a category
with kernels and cokernels.

By considering the Hilbert polynomials, it is easy to prove that the
multiplicity is additive, e(M) = e(M')+e(M"), provided the convention
e(0) = 0.

Theorem 14 If M is holonomic, it is of finite length.

Proof Consider a sequence of holonomic D-modules:
O(M (- ( M1 ( M) ( M.

To show that M is of finite length we need to find a bound for the length
[ of any such sequence.
Breaking down the sequence above into short exact sequences

0— M,y —» M; > M;/M;—y —»0, (i=2,...,1)

and using the additivity of the multiplicity shows that e(M) is such a
bound. O

The converse is false as was shown in [26]: there exist simple D-
modules, i.e., of length one, that are not holonomic.

Example 4.2.2 Let Q = 0 + (1 — x122)02 — x2 be an element of the
second Weyl algebra D and let M = D/(Q).

Note that dimM = 4 — 1 = 3 # 2, therefore, M is not holonomic.
However, by modifying [26, Theorem 1.1] to fit our notation and con-
sidering left D-modules, we can show that M is simple.

Moreover, in [4] it has been shown that, in a certain sense, almost all
operators in D generate a simple D-module. To our best knowledge, the
problem of determining simplicity of a D-module algorithmically is still
open.

4.2.3 Holonomic rank and Weyl closure

Let I be an ideal of the Weyl algebra D and consider its extension I =
k(x)®1I in the algebra of differential operators with rational coefficients,
k(x)(9) = k() e} D-

We define the holonomic rank of the D-module D/I to be

rank D/I = dimyy) k(z)(8)/1.
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If T is O-dimensional, then the holonomic rank is finite. Holonomic rank
is obtained by computing a Grobner basis of I with respect to an ad-
missible ordering that eliminates the variables 8 (see [24, Section 1.4]
for details).

If I is a holonomic ideal then rank D/I < oo: the converse is not true.

Example 4.2.3 For I = (2101 + 1,2102) the rank of D/I equals 1,
since dimyg) k(x)(8)/I is 1-dimensional. However, I is not holonomic,
since the pair of generators above forms a Grobner basis, but gr D/I =
klzy,x2,&1,&2]/(21€1, 21€2) has dimension 3.

i2 : D = makeWA(QQ[x_1,x_2]);

i3 : I = ideal(x_1*dx_1+1, x_1*dx_2);

03 : Ideal of D

i4 : isHolonomic I

o4

false
i5 : holonomicRank I

ob =1

The holonomic rank of a D-module M = D/I provides analytic in-
formation about a system of linear PDEs corresponding to I. Namely,
the dimension of the space of holomorphic solutions to the system in a
neighborhood of a nonsingular point equals rank M.

One can check that in Example 4.2.3 the solution space is spanned by
the function f(z1,z2) =1/z;.

For an ideal I C D, there is an operation that completes I with all
operators annihilating the functions in its solution space. Having the
natural inclusion D C k(x)(8), we define the Weyl closure of I as

Cl(I) =InD.

Example 4.2.4 Let I = (20 — 1) be an ideal of the first Weyl algebra,
then

CI(I) = (8%,20 — 1).

Indeed, the equation (@ — 1) - f = 0 has one solution up to a multiple,
f = x, which is annihilated by 62 as well.

An algorithm for Weyl closure has been described in [30].
Going back to the open question of detecting simplicity of a D-module
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D/I brought up in the previous section, since C1() D I, it boils down to
two cases: Cl(I) = I and Cl(I) = D. If rank D/I < oo, the former case
can be effectively resolved by determining whether the k(x)(8)-module
k(z)(8)/I is simple.

4.2.4 Localization

Consider the polynomial ring R = k[z] and its localization Ry = k[z, f~!]
for a nonzero f € R. Let us establish the natural D-module structure
on the latter:

zi-gf 7 =xigf,
oot (1)

8.271'

for 1 <i<n,ge€klz],and j € Z>o.
Theorem 15 Ry is a holonomic D-module.
Proof For proof see, for instance, [5, 5.5]. O

Example 4.2.5 Let f = 2 € R = k[z], a polynomial in one variable.
Then Ry is holonomic and, by Theorem 13, cyclic.

Indeed, Ry is generated by z='; a k-multiple of every monomial x’
can be obtained from z~! either via multiplication by z/*!, if j > —1,

or by applying a constant multiple of 9~7~! otherwise.

In general, the computation of a cyclic generator of Ry requires know-
ing the roots of the Bernstein-Sato polynomial of f discussed in the
next subsection; algorithms for computing localization can be found in
[22, 23].

4.2.5 Bernstein-Sato polynomial

Here we will consider the n-th Weyl algebra D(s) = k(s){x,d) with
the ground field of univariate rational functions k(s). Also let M =
k(s)[z, f~']|f* be a free module of rank one over localization of the
polynomial ring k(s)[z] at a nonzero polynomial f € k[z]. The standard
generator on M is denoted by the symbol f?; the choice of the symbol
is explained by the action of the Weyl algebra defined below.
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We let M be a D(s)-module with the structure induced by the follow-
ing “natural” action of the generators:
i gf ST = 2igf TS,
s a9 ,_. N e
Oy gf " = <8 f7+(s=9)9f™ 1) f*
T

for 1 <i<nandje€ Zxo.

Theorem 16 M is a holonomic D(s)-module.
For any nonzero f € k(x| there exist a nonzero b € k[s] and Q € D(s)
such that the functional equation

b-f*=Q-(ff*) (4.3)
holds in M.

Proof See [5, 5.6,5.7]. |

The nonzero monic b € k[s] of the minimal degree, for which the
functional equation (4.3) exists, is called the Bernstein-Sato polynomial
of f and is denoted by by.

Theorem 17 The localization Ry at a polynomial f € R = kx| is
generated by f* where a is the lowest integer root of by.

Proof Indeed, by specializing s to any integer ¢ < a in the functional
equation (4.3) we get bg| _, f' = Q|,_, - f**!, where bs| _, # 0. This
means that all powers f' € D - f* C Ry, therefore, D - f* = Ry. O

The study of Bernstein-Sato polynomials is a core topic of the classical
D-module theory. These polynomials possess several striking properties,
some of which are rather hard to prove:

e A polynomial f is regular, i.e., (f,0f/0z1,...,0f/0z,) = k[z], if and
only if by = s+ 1. (Proving one direction is not hard, for the other
see [7, Proposition 2.6].)

e For any f € k[x], the roots of by are negative rational numbers. In
particular, by € Q[s]. (See [14] for a proof.)

e For a polynomial f in n variables, the roots of by are > —n. (See
31].)

o The set {bs : f € k[z1,...,25], chark =0, deg f < d} is finite. Here
d,n € Z~q are fixed, but k ranges over all fields of characteristic 0.
(See [18] for a proof and [15] for a constructive proof.)
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Because of numerous applications, in particular one due to Theorem
17, a lot of attention has been given to the computation of Bernstein-
Sato polynomials. Formulas for Bernstein-Sato polynomials exist for
special cases: many interesting families are considered in [34]; for the
generic hyperplane arrangements see [33].

However, it was not until the end of the 20th century that the first
general algorithm was produced (see [21]). The algorithm, in practice,
can be carried out for polynomials f of low degrees in a reasonably small
number of variables. This is due to the dependence of this approach on
Grobner basis computations in Weyl algebras.

Here is an example of computation via the classical algorithm [21] in
D-modules for Macaulay 2 for f = x$ + xg“ + x124 for a = 3.

i7 : factorBFunction globalBFunction(x_173+x_2"4+x_1%x_2"3)
N/ N/ 11\/ 13\/ 17\

5
o7 = (s + 1){s + -lls + -lls + —=||s + —=||s + -=|Is + ——|

6/\ 12/\ 12/\ 12/\ 12/
This particular computation is accomplished in less than a second, how-
ever, one may see it gets much harder for higher values of a.

The fastest software for computing Bernstein-Sato polynomials, to our
knowledge, is Risa/Asir [20].

4.3 Applications

Two well-developed applications of the D-module theory are those to
A-hypergeometric systems of differential equations and to the local co-
homology of holonomic modules. The former is described in detail in [24]
and is currently a very active area of research. The latter is a powerful
concept used throughout commutative algebra and algebraic geometry;
use [12] as an extensive “manual”.

4.3.1 A-hypergeometric systems
Let D = k(x,0) be the first Weyl algebra and let

Q=z(1-2)0*+ (c—z(a+b+1))0—abe D.

Then @ - f = 0 for an indeterminate univariate function f is known as
the Gauss hypergeometric equation. The study of this equation dates
back to the 19th century. It is important, since any ODE with three
regular singular points is equivalent to this equation.
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Let us reformulate the problem using the so-called Fuler operator
0 = x0:

2Q-f=00+c—1)—z(0+a)(f+b)- f=0. (4.4)

It is an easy exercise to do the conversion.

It follows from Theorem 9 that locally at any point zo € C\ {0, 1} the
equation (4.4) has two linearly independent solutions. If we consider a
larger space of logarithmic solutions of the form

(z — 20) go + (= — xo)* log(z — z0)) 91

with functions gg and g; holomorphic in the neighborhood of zg, then
the dimension of the solution space of (4.4) equals 2 even in the neigh-
borhoods of o =0, 1, co.

For more details see [24, Section 1.3]. In particular, [24, Theorem
1.3.4] explains how to construct solutions in the open unit disk centered
at g = 0 in the form of power series, the so-called Gauss hypergeometric
series.

Let us reformulate the Gauss hypergeometric equation in yet another
way. Consider the system of linear PDFEs corresponding to the following
ideal in the fourth Weyl algebra D:

I = (8233—8184,01 —94+1—0,92+94+a,03+94+b),

where 0; = x;0;, for 1 < i < 4. A function g in four variables is annihi-
lated by the last three generators of I above, the so-called homogeneities,
if and only if it is of the form

ol@) = 25" 'ry 003 f(”) , (4.5)

Z2Z3

for a univariate function f.

Theorem 18 A function f satisfies the Gauss hypergeometric ODE if
and only if g(x) in (4.5) is annihilated by 0203 — 0104 € D.

Proof The proof is done by a routine check; see [24, Proposition 1.3.7].
O

Now we can encode the ideal I in an integer matrix A and a vector 3
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that depends only on the parameters a, b, c:

100 -1 c—1
A=[0 10 1| and g=|[ -1
001 1 —b

The ideal I4 generated by all elements 8" — 8", where u,v € Z%, such
that Au? = AvT, turns out to be principal and is generated by the
operator 0203 — 004.

Let @ = (61, 62,05,04), then the homogeneities are the entries of the
vector AT — 3. The homogeneities together with T4 generate the ideal
I defining a system equivalent to the Gauss hypergeometric equation.

Now we are ready for an abstract definition. Given a matrix A € Z4*"

of rank d and a column vector 3 € k9, let the toric ideal be
Iy =({8"-8": Au” = AV, u,v € Z4,}) C k[].

Note that it is an ideal in a (commutative) polynomial ring.
We call the system defined by the A-hypergeometric ideal

Ha(B) = (I4) + (407 - B)

in the n-th Weyl algebra D an A-hypergeometric system of PDE with
parameters 3.

The class of these systems is also known as GKZ systems; they were
introduced in the 1980s [9].

We note that a set of generators for I4 can be computed by a purely
combinatorial algorithm; see [27, Algorithm 4.5], for example.

Theorem 19 If vector (1,1,...,1) belongs to the Q-span of the rows
of A (we later refer to this as the homogeneity condition), then H4(0)
is holonomic for all 3 € k™.

Proof See the sketch of a proof in [24, Theorem 2.4.9]. O

Let conv A be the convex hull of the points in R? corresponding to
the columns of A; this is a (d — 1)-dimensional convex polytope. We
denote by vol A the normalized volume of conv A, i.e. the usual Euclidian
volume multiplied by (d — 1)!.

From holonomicity it follows that the holonomic rank of D/H 4(f) is
finite. There is an algorithmic way to construct the logarithmic series
solutions that account for the space of solutions of dimension vol A (see
[24, Theorem 3.5.1] for definition and an algorithm).
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For a long time it was believed that the rank (D/H 4(3)) is indepen-
dent of 3 due to the following result [1]: if § lies in the complement of
a certain arrangement of affine planes then rank D/H 4 () = vol A.

This belief is shown to be false by the following example:

Example 4.3.1 Let H4(3) be the A-hypergeometric ideal with param-

eter 3, where
11 1 1
A‘@1,3Q'

Then 5 = rank D/H () # vol A = 4 for 8 = (1,2)7, which is confirmed
by this computation:
i2 : A = matrix{{1,1,1,1},{0,1,3,4}};

2 4
02 : Matrix ZZ <--- ZZ

i3 : holonomicRank gkz(4,{0,0})

03 =4
i4 : holonomicRank gkz(A,{1,2})
o4 =5

In the recent paper [19] the set of exceptional parameters 3, i.e.,
where the holonomic rank jumps, is described precisely using homo-
logical methods.

4.3.2 Local cohomology
Let I = (f1,..., f4) be an ideal in the ring R = k[z] of polynomials in n
variables. Consider the Cech complex

C*(fi,.., fsR): 0-C'-C'—... 1=,

where the chains are
ko
ct= P R,
1<i<...<ip <d

and the maps C' — C!*! are the alternating sum of maps

szl "'ftl - Rle'

“fn+1’

which are either natural inclusions of one localization into the other if
{11, .- vu} < {j1,---,Jiv1} € {1,...,d}, or zero maps otherwise.
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It can be constructed as a tensor product of shorter complexes:
C*(fi,-- [ R) =C*(f; R)® - @ C*(fa; R),
where C*(f;; R) is
0— R<— Ry, — 0.

We define local cohomology modules H}(R) as the homology of the
Cech complex C*(f1,..., f4; R).

Note that, since R and its localizations are holonomic D-modules
for the n-th Weyl algebra D, the chains C* of the Cech complex are
holonomic as well. Now, local cohomology modules are formed by taking
kernels and cokernels of D-morphisms between holonomic modules, and
therefore are also holonomic.

Moreover, we can compute HJ(R) via Grobner basis techniques; this
idea was first implemented in [32].

Example 4.3.2 Consider the ideal I = (f1, f2, f3) C R = Q[zy, ..., z¢]
generated by the minors of the matrix

T o X3
x4 s xg)'
polynomials fi = z1Z5 — 224, f2 = T1%6 — T34, and f3 = T2T6 — T3Ts5.
The Cech complex C*(f1, f2, f3; R) is

Co Ci C Cs
I I I I
Rfl Rf1f2
@ @
0O - R — Rf2 - Rf1f3 - Rf1f2f3 - 0
@ @
Ry, Ry

We can do the computation of local cohomology in Macaulay 2:

i2 : R =QQ[x_1..x_6];
i3 : D = makeWA R;

i4 : I = minors(2, matrix{{x_1, x_2, x_3}
{x_4, x_5, x_611);
i5 : H = localCohom(I, Strategy=>Walther,

LocStrategy=>0aku) ;
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The presentations obtained for H¥(R), 0 < i < 3, are very large:
below is a “pruned” version of H(R) = D/J, where J is an ideal with
a Grobner basis of 163 elements:

i6 : presentation Dprune H#3

06 = | x_4dx_4+x_5dx_5+x_6dx_6+6 x_1dx_4+...

x_4x_6"2dx_3"2dx_5-x_4x_6"2dx_2dx_3dx_6-... |

1 163
06 : Matrix D <---D

Although the presentations of the local cohomology modules are hard
to display, let alone analyze by hand, we can see which of them vanish.

i7 : scan(keys H, i->
<<"H""<<i<<" vanishes: "<< H#i==0 <<endl)
H"0 vanishes: true
H"1 vanishes: true
H"2 vanishes: false
H"3 vanishes: false

This computation establishes a highly nontrivial fact, H(R) # 0,
which implies that there are no g1,g2 € R such that the radicals of I
and (g1, g92) C R are equal.

An alternative D-modules technique, that of characteristic cycles, was
used in the algorithm of [2] to produce the same result.
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5.1 Introduction

Among nonlinear partial differential equations (PDEs) there is an ex-
ceptional class of so-called integrable equations. Integrable equations
can be studied with the same completeness as linear PDEs, at least in
principle. They possess a rich set of exact solutions and many hidden
properties such as infinite hierarchies of symmetries, conservation laws,
etc.

There are two known classes of integrable equations. One class is
linearisable equations, i.e. equations related to linear ones by differential
substitutions. For example, the famous Burgers equation

Up = Ugy + 2UU,

can be linearised by a differential substitution u = ¢, /¢ (the Cole-Hopf
transformation). In the new variable ¢ it takes the form of a linear heat
equation:

¢t = ({b:c:c .

Another class is equations solvable by the inverse scattering transform
method (such as the Korteweg de—Vries equation u; = ugzy + 6uuy).
There is a massive literature on integrable equations, their solutions and
properties (see for example the monographs [1, 2, 3, 4, 5] and references
therein).

In the symmetry approach the existence of higher symmetries of a
PDE or, more precisely, of an infinite hierarchy of higher symmetries
is regarded as the definition of its integrability. Existence of a finite
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number of symmetries of a partial differential equation may not secure
its integrability [6, 7, 8, 9].

The symmetry approach based on a concept of formal recursion op-
erator has been formulated and developed in works of Shabat and co-
authors (see for example review papers [10, 11, 12, 13]). It has been
shown that the existence of an infinite hierarchy of symmetries or local
conservation laws or a possibility to linearise a certain equation imply
the existence of a formal recursion operator. The formal recursion op-
erator is carrying information about integrability and is not sensitive to
lacunas in the infinite hierarchy of symmetries or conservation laws. The
conditions of its existence give integrability conditions for the equation
which can be formulated in a form of an infinite sequence of canonical
densities and encode many hidden properties of the equation. If a den-
sity is non-trivial (i.e. is not a total derivative) it provides a density of
a local conservation law of the equation. For linearisable equations all
densities except a finite number are trivial. The sequence of canonical
densities is invariant with respect to invertible (and almost invertible
[14]) transformations.

It was the first approach enabling one to give a complete description
of integrable evolutionary equations of the form

Ut = f(u:l::l?a Ug, U, T, t) )
ug = Olu+ f(OF My, .., ug, u), n=34,5,

where f is a smooth function of its arguments [15, 16, 17]. Integrable
differential-difference equations of the form

Un,t :f(un-—lvumun+1)a nez

have been classified in [18, 19]. It can also be applied to systems of
equations. In particularly a complete classification of systems of two
equations of the form

u; = A(u)ug, + F(u,u,), det(A(n)) #0, u=(u,v)T (5.1)

possessing infinite hierarchies of local conservation laws has been given
in [20, 21, 14]. Existence of higher conservation laws immediately implies
that the trace of A(u) vanishes. System (5.1) can still possess an infinite
hierarchy of symmetries even if the trace of A(u) is not equal to zero. In
the latter case the system is linearisable by a Cole-Hopf type differential
substitution. In the case of A(u) being a unit matrix integrable systems
of the type (5.1) have been listed in [22]. A complete classification of
polynomial homogeneous integrable systems of the form (5.1) in the case
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when matrix A(u) is constant and has two distinct eigenvalues is given
in [23].

In this approach it is not assumed that equations are polynomial or
rational functions of independent variables and their derivatives. A dis-
advantage is that for every fixed crder of the equation the integrability
conditions have to be derived from scratch and thus it is difficult to
draw a global picture, i.e., in all orders. Also, this approach is heav-
ily based on the concept of locality which makes it difficult to apply to
integro-differential, non-evolutionary and multi-dimensional systems.

In this article we would like to give a brief account of recent devel-
opment of the symmetry approach. The progress has been achieved
mainly due to a symbolic representation of the ring of differential poly-
nomials which enables us to use powerful results from algebraic geome-
try and number theory. Symbolic representation (an abbreviated form
of the Fourier transformation) was originally applied to the theory of
integrable equations by Gel'fand and Dikiif [24]. The symmetry ap-
proach in symbolic representation has been formulated and developed
for the problem of the global classification of integrable evolutionary
equations in [25, 26, 27]. In symbolic representation the existence of an
infinite hierarchy of symmetries is linked with factorisation properties
of an infinite sequence of multi-variable polynomials. Symbolic repre-
sentation is a suitable tool for studying integrability of noncommutative
[28], non-evolutionary [29, 30, 31], non-local (integro—differential) [32],
multi-component [23, 33, 34] and multi-dimensional equations [35]. It
is convenient for testing integrability of a given system, provides useful
information on the structure of the symmetry hierarchy and is suitable
for global classification of integrable equations. In this framework it is
natural to define approximate symmetries and approximate integrabil-
ity. Study and classification of approximately integrable equations is a
new and unexplored area of research with a considerable potential for
applications. The symmetry approach in symbolic representation has
certain drawbacks due to a restriction to the ring of differential polyno-
mials, which can be amended in some cases by suitable extensions of the
ring.

In the literature one can find other attempts to describe integrable
systems based on properties of solutions, such as the Painlevé property
in the analytical theory (see for example [2, 3, 4]), cxistence of three
soliton solutions for the bi-linear (Hirota) representation (see the article

t Dickey is another transliteration of the name appearing in the literature.
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by Hietarinta in this book), elasticity of soliton collisions in numerical
experiments, etc. Existence of one nontrivial symmetry of a prior fixed
order can be used for isolation of integrable equations [36, 37]. Every
method has certain advantages and disadvantages. The reader can judge
the power of each approach by the results obtained, their completeness
and generality.

Our article is organised as follows. In the next Section 5.2 we give basic
definitions and notations. We define symmetries, approximate symme-
tries and the formal recursion operator. Then we introduce symbolic
representation of the ring of differential polynomials. A generalisation
to several dependent variables is given in the last part of this section. In
Section 5.3, using approximate symmetries in symbolic representation,
we study the structure of the Lie algebra of symmetries. In symbolic
representation the existence of approximate symmetries can be refor-
mulated in terms of factorisation properties of polynomials. Existence
of one nontrivial symmetry enables us to constructively extend any ap-
proximate symmetry of degree 3 to any degree (Theorem 4). In symbolic
representation conditions for the existence of a formal recursion opera-
tor lead to a simple test for integrability. Here a state of art result is
a global classification of integrable homogeneous evolutionary equations
(Section 5.3.2). The result of the classification can be accounted for as
follows: Integrable equations are symmetries (members of infinite hier-
archies) of nonlinear PDEs of orders 2, 3 or 5. Thus it is sufficient to
classify integrable equations of order 2, 3 or 5. There is only a finite
number of such equations (namely 10) and the corresponding hierarchies
of symmetries (Theorem 9). In Section 5.4 we apply our method to non-
local (Benjamin-Ono and Camassa-Holm type) equations. It requires a
non-local extension of the ring of differential polynomials and symbolic
representation proved to be a suitable language to tackle the problem.
In Section 5.5 we present results on classification of Boussinesq type
equations. In the case of even order equations we use conditions follow-
ing from the existence of the formal recursion operator. Together with
classification results for orders 4 and 6 we present three new integrable
equations of order 10. A global classification of all integrable odd order
Boussinesq type equations is given in section 5.5.2. A generalisation of
the symbolic approach to 2+1-dimensional equations enables us (Section
5.6) to study the structure of symmetries of Lax integrable equations and
to prove the conjecture on the structure of non-local terms. Finally we
discuss progress in the problem of classification of systems of integrable
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equations. In particularly we have found two integrable systems of order
5 which we believe are new.

5.2 Symmetries and formal recursion operators in symbolic
representation

5.2.1 Differential polynomsials

We shall adopt the following notations: wu, denotes the n-th derivative

0w of the dependent variable w. In particular, ug denotes the function

u itself (often we shall omit the zero index of ug and simply write u).
A u-monomial is a finite product of the form

ap, 01 [e7%)
uO ul .« .. uk y
where all exponents ay,...,a, are non-negative integers (s € Zxo),
and the total degree is |a| = ag + a3 + -+ ag > 0.
A finite sequence o = (ap,...,ax) can be seen as an element of a

semi-group Z< of infinite sequences of non-negative integers, such that
only a finite number of entries in a sequence are non-zero and there is at
least one nonzero entry. There is an obvious bijection between the set
of all u-monomials and ZZ. We can simplify the notations as follows:

o a1, 02 - g
u® = ugtug up®.
A differential polynomial f in variables ug, u1, ... with coefficients in

C is a finite linear combination of u-monomials, i.e.,

f=2aau°‘, aq € C,
acA
where the sum is over a finite set A = {a|a € ZZ}}. The set of all
such differential polynomials is denoted R. It is a ring with the usual
addition and multiplication of polynomials. Moreover, it is a differential
ring and C € R. The linear operator

D= Y (wenze ) (5.2

k>0

is a derivation of R corresponding to the total z-derivative. The operator
D, acting on an element f € R results in a finite sum depending on
the choice of f. Therefore, we do not indicate the upper limit for the
summation in the definition of D, and all other operators defined in this
article.
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It is easy to verify that monomials u® are eigenvectors of the following
commuting linear operators

0 0
Dy=> uz—, Xu=)_ (kuk————-) (5.3)
k>0 8uk k>1 3uk
with Dy (u®) = |afu®, and Xy (u®) = dau®, where do =3, -, (kak) .
Thus the ring R is graded and is a direct sum of eigenspaces

R=PRrR" = P Ry,

neN n,pEN

R"={f e RIDu(f) =nf}, Ry={f€R"|Xu(f)=prf}

If feRy, g€ RS, then f-g € R;‘I;". Simply speaking, Ry is a
linear subspace of homogeneous differential polynomials such that each
monomial has: (i) the number of u and its derivatives being n; (ii) the

total number of derivatives being p. For example,
u%w; + 2uousuyg — ugug € 723 c RS

In some applications it is convenient to introduce weighted homoge-
neous polynomials. Let us assume that the dependent variable u has a
weight A which is a fixed rational number. We define a linear differential
operator

Wi = ADy + Xu, Wr:R — R.

Differential monomials are eigenvectors of Wy and the spectrum of Wy
isaset Sy = {nA\+m—1|n,m € N}. We can decompose R into a direct
sum of eigenspaces

R=@P W,  Wa={feRIWA(f) =pf}.
HESK
Elements of W, are called A-homogeneous differential polynomials of
weight u. For example, ug + 6uu; is a 2-homogeneous differential poly-
nomial of weight 5. We have W, W, C W,,. Moreover, if A > 0 then
subspaces W, are finite dimensional.
It is useful to define the little “oh” order symbol.

Definition 1 Let f € R. We say that f = o(R™) if f € @y, R*.

For example, f = o(R?) means that the differential polynomial f does
not have linear, quadratic and cubic terms in u and its derivatives.
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For any two elements f,g € R we define a Lie bracket

[/ gl = £u(9) — 9.(f), (5.4)

where the Fréchet derivative for any element h € R is defined as a linear
differential operator of the form

hy = Z auk (5.5)

k>0

We say that an element h € R has order n if the corresponding differ-
ential operator h, is of order n.

Thus R, treated as a linear space over C, together with the Lie bracket
(5.4) is an infinite dimensional Lie algebra of differential polynomials
over C. The bilinearity and skew-symmetry of the bracket (5.4) are
obvious. The Jacobi identity can be easily verified.

The grading of R induces the grading of the Lie algebra of differential
polynomials since we have

Ry, R C Rpft. (5.6)

5.2.2 Symmetries, approximate symmetries and formal
recursion operator

In this section, for the sake of simplicity, we give definitions suitable for
evolutionary equations

w=F  FeR. (5.7)

These definitions will later be extended to non-evolutionary equations
and multi-component systems of evolutionary equations.
An evolutionary equation (5.7) defines a derivation Dp : R — R:

Drp(a) = a.(F).

In this notation the derivative D, = D,, and it is in agreement with
(5.3). Sometimes, for simplification of notations, we will denote D as
D;.

Definition 2 A differential polynomial G € R is said to be a symmetry
(a generator of an infinitesimal symmetry) for an evolutionary partial
differential equation (5.7) if the Lie bracket of F and G vanishes, i.e.,
[F, G]=0.
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If G is a syminetry, then the evolutionary equation v, = G is compati-
ble with (5.7). There arc many other equivalent definitions of symmetry
(see for example [10, 12]). Elements of R do not depend on z,t ex-
plicitly. Thus our definition does not include space and time dependent
symmetries such as dilatation and Galilean symmetries. In this arti-
cle, when we are talking about symmetries we do mean space and time
independent symmetries.

Symimetries form a subalgebra Cr (F) = {G € R|[F, G| = 0} which
is the centraliser of F' (this immediately follows from the Jacobi iden-
tity). Since F' € R does not depend on x,t explicitly, then any equa-
tion (5.7) possesses trivial symmetries u;, F € Cr (F) corresponding to
translations in space and time.

Definition 3 Equation (5.7) is said to be integrable if its algebra of
symmetries Cr(F') is infinite dimensional.

For nonlinear equations of the form
up = Up + f(Un_1,...,1u) n>2, (5.8)

it is easy to show that the algebra of symmetries C'g (u) is commutative.
Moreover, the symmetriecs G € R must have a linear term (see section
5.3.1).

Having in mind the gradation (5.6) of the Lie algebra of differential
polynomials we represent the right hand side of equation (5.7) and in-
finitesimal generators of symmetries in the form

F=fi+fat -, G=gi+g+ -, feg€R"

and study them in the sequence of terms, i.e., linear, quadratic, cubic,
etc.

Definition 4 A differential polynomial G € R is said to be an ap-
proximate symmetry of degree p for an evolutionary partial differential
equation (5.7) if [F, G] = o(RP).

Equation (5.8) possesses infinitely many approximate symmetries of
degree 1. An equation may possess approximate symmetries of degree
2, but fail to possess approximate symmetries of degree 3. An integrable
equation possesses infinitely many approximate symmetries of any de-
gree. In the next section, using symbolic representation we formulate
the necessary and sufficient conditions for the existence of approximate
syminetries of arbitrary degree.
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For example, the equation
up = us + duug , (5.9)
has approximate symmetry of degree 2 with a generator
G = uy + Tuuz + l4ujus .
Indeed,
(G, us + 5uuy] = 210uus + 105uu3 4+ 105uu us = o(R?).

Moreover, equation (5.9) has infinitely many approximate symmetries
of degree 2 (this fact will become obvious in the next section), but fails
to have approximate symmetries of degree 3 and thus is not integrable.

It follows from the Jacobi identity and (5.6) that approximate sym-
metries of degree n form a subalgebra of R which we denote C%(F).
Obviously

R =Cr(F)DCA(F)DCH(F)D--- D CF(F) = Cr(F).

Formal pseudo-differential series, which for simplicity we shall call
formal series, are defined as

A=0, D" +am DI 4 tagt+a 1D+ ap €R.(5.10)
The product of two formal series is defined by

aDk o bD™ = a(bDTTF 4+ Clby DEF™ 1 4 CRbyDEF™2 4 ..1), (5.11)
where b; = DI (b), k,m € Z and the binomial coefficients are defined as

nn=1)(n-2)---(n—75+1)

Jj —
C) = i .
This product is associative.
Definition 5 A formal series
A=1pDt + - +lg+1 4D 4+, IkeR (5.12)

is called a formal recursion operator for equation (5.7) if
Dp(A)=F.oA—-AoF,. (5.13)

In the literature a formal recursion operator is also called a formal sym-
metry of equation (5.7).

The central result of the Symmetry Approach can be represented by
the following Theorem, which we attribute to Shabat:
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Theorem 1 If equation (5.7) has an infinite hierarchy of symmetries
of arbitrarily high order, then a formal recursion operator exists and its
coefficients can be found recursively.

The Theorem states that for integrable equations, i.e. equations pos-
sessing an infinite hierarchy of higher symmetries, one can solve equation
(5.13) and determine recursively the coefficients l,,, l;,—1,... of A such
that all these coefficients will belong to the ring R. The solvability
conditions of equation (5.13) can be formulated in an elegant form of
a canonical sequence of local conservation laws of equation (5.7). They
provide powerful necessary conditions of integrability. These conditions
can be used for testing for integrability for a given equation or even
for a complete description of integrable equations of a particular order.
A detailed description of the Symmetry Approach including the proof
of the above theorem and classification results for integrable PDEs and
systems of PDEs based on the concept of formal recursion operator can
be found in the review papers [10, 11, 12, 13].

5.2.83 Symbolic representation

Symbolic representation transforms problems in differential algebra into
ones in algebra of symmetric polynomials. This enables us to use power-
ful results from Diophantine equations, algebraic geometry and commu-
tative algebra. Symbolic representation is widely used in the theory of
pseudo-differential operators. For integrable systems it was first applied
by Gel'fand and Dikii [24] and further developed in works of Beukers,
Sanders and Wang [7, 25, 26]. Symbolic representation can be viewed
as a simplified notation for a Fourier transform [29].

In order to define the symbolic representation R = ®R" of the ring
(and Lie algebra) of differential polynomials R = @R", we first define
an isomorphism of the linear spaces R™ and R™ and then extend it to
isomorphisms of the differential ring and Lie algebra equipping R with
the multiplication, derivation and Lie bracket.

Symbolic transform defines a linear isomorphism between the space
R™ of differential polynomials of degree n and the space C[¢y,. .. ,{n]sﬁ
of algebraic symmetric polynomials in n variables, where S§ is a per-
mutation group of n variables &1,...,&,. Elements of R™ are denoted
by @"a(é1, ..., &n), where a(é1,...,6n) € Clé,...,&]%. The isomor-
phism of linear spaces R™ and R" is uniquely defined by its action on
monomials.
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Definition 6 The symbolic form of a differential monomial is defined
as

Wiy Uiy * " Uj,, € R" | — ﬂn( i] ;2 e ;iL” >S,f € 7?'"
where ()¢ denotes the average over the group S¢ of permutation of n
elements €1,...,&,:

1
(@€, &n)lss = > al&oy e Eomy)-
ceSS
For example,
02

wp > ALY, W 7w e (64 ),

-3
uui — %-(5253 + &6 + 618&3), up — aPEFEbek.

It is easy to see that in R the linear operators D,, and X,,, cf. (5.3)
are represented by

9 - 0
Dy =i, Xu—;fza&.

With this isomorphism the linear spaces R;} corresponding to R}, have
the property that the coefficient functions a(&y, ..., &, ) of symbols

a"a(&r, ..., &) € RY

are homogeneous symmetric polynomials of degree p.

One of the advantages of the symbolic representation is that the action
of the operator D,, cf. (5.2) is very simple. Indeed, let f € R™ and
fr—1"a(&,...,&,) then

Do(f) +— @ al&r,-- &)+ 6n),

and thus DE(f) — a™a(€r,...,&)(E + -+ &)

Let f e R", f—u"a(&,...,&) and g € R™, g— a"b(&1,....&m).
then

(i). The product f - g has the following symbolic representation:

fog @l ) 0THE - )
= ﬂ"+m<a(§], Ceey f")b(fn-}-l, Ce ,€n+m)>55

n—+4m

This defines the corresponding multiplication o in R. The representation
of differential monomials (Definition 6) can be deduced from uy — a¢¥
and this multiplication rule.
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(ii). The Lie bracket [f, g], cf. (5.4) is represented by
[f, g +— artm! (5.14)

(na(§17 e afn—lv&n + gn-}—m—l)b(fna e ;€n+m—1)—
Wlb(fl, cee 7§m—1,§m + §n+m—1)a(£m7 .. ~afn+m—1)>sf

n4+m-—1

For example, if f € R!, f 4w(£;) and g € R™, g — @"a(&y, ..., &),
then

[frgl— (W& 4+ &) —w(&) = —w(&n)) @"alér, .-, &n)-

In particularly, for f = u; we have w(€;) = & and [u;, g] = 0 for any
g € R. Thus u; is a symmetry for any evolutionary equation u; = g.

Symbolic representation of differential operators (such as the Fréchet
derivative (5.5) and formal series (5.10)) is motivated by the theory of
linear pseudo-differential operators in Fourier representation. To oper-
ator D, (5.2) we shall assign a special symbol 7 and the following rules
of action on symbols:

n
n(@"a(és,. .., &) = @"a(&,. .., &n) Z
and the composition rule

nodta(&y,...,&) =4 a(ll, ..., &) Z§J+n

The latter corresponds to the Leibnitz rule D, o f = D, (f)+ fD,. Now
it can be shown that the composition rule (5.11) can be represented as
follows. Let us have two operators fDZ and gD such that f and g have
symbols @‘a(&1, . .., &) and @9b(&y, ..., ;) respectively. Then

ng'_’ﬂia(gla"'agi)nqv gD:;'—)ﬂjb(gl""?gj)ns

and
. i+j
fDEogD} — 4" a(ér, . &)+ Y Em)™b(Eirrs o ) st
m=1+1

(5.15)
Here the symmetrisation is taken over the group of permutations of all
t+ j arguments &, ...&;+;; the symbol 7 is not included in this set. In
particular, it follows from (5.15) that D% o D% — n?*s. The composition
rule (5.15) is valid for both positive and negative exponents. In the case
of positive exponents it is a polynomial in 7 and the result is a Fourier
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image of a differential operator. In the case of negative exponents one
can expand the result on 1 at n — oo in order to identify it with (5.11).
In the symbolic representation instead of formal series (5.10) it is natural
to consider a more general object, namely formal series of the form

B =b(n) + abi(&1,n) + @%b (€1, 2, ) + 0%ba(€1,62,E3,m) + -+,

where the coefficients b(n) # 0, bk (&1, . . ., €k, n) are rational functions of
their arguments (with certain restrictions which will be discussed in the
next section).

The symbolic representation of the Fréchet derivative of the element

fr—a"a(&,...,&) is
for— i ta(&,. . 6nm1,m).
For example, let F' = uz + 6uu;, then F — a&} + 3a2(&1 + &2) and
Fo - n® 4+ 64(& +n).

It is interesting to notice that the symbol of the Fréchet derivative is al-
ways symmetric with respect to all permutations of arguments, including
the argument 7. Moreover, the following obvious but useful Proposition
holds [29]:

Proposition 1 A differential operator is a Fréchet derivative of an
element of R if and only if its symbol is invariant with respect to all
permutations of its argument, including the argument 7).

The symbolic representation has been extended and proved to be very
useful in the case of noncommutative differential rings [28]. In the next
sections symbolic representation will be extended to the cases of many
dependent variables, suitable for study of system of equations and fur-
ther to the cases of non-local and multidimensional equations.

5.2.4 Generalisation to several dependent variables

The definitions and most of the statements formulated in the previous
sections 5.2.1-5.3.1 can be easily extended to several dependents, i.e.,
to systems of equations. In this section we will give a brief account
of definitions and some results concerning two dependent variables. A
generalisation for N dependent variables is straightforward. For details
see [11, 12, 13, 30, 31, 33].
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Similarly to u-monomials (Section 5.2.1), we define v-monomials
WP =l B pe Z3y-

A differential polynomial f in variables ug, vg, u1,v1,... is a finite linear
combination of the form

f = Z aa,guavﬂ, QAo,3 € C,
(a,B)€A

where the sum is taken over a finite set
A={(o,8) |, € Z%o, laf + 18] > 0}.

It is a differential ring. We again denote it R. The derivation D, (cf.
(5.2)) is now replaced by

0 0
D, = — + Vg1 | -
= Z (Uk+1 Dun + k+13vk>
k>0
For any f € R the Fréchet derivative f, is a (row) vector operator

O e 9F

T 9
Ouy, = Oy,

fo = (fau fro) = (5.16)

k>0
Systems of two evolutionary equations we will write in vector form
u; = F(u,uy,...,u,), (5.17)

where u, = (ug,vx)?T and F = (F}, F3)T are vector-columns where
Fy,F, € R (the upper index T stands for the transposition).
Let us introduce an infinite dimensional linear space over C

L= {(H,H)T | Hy,Hy € R}.
We equip £ with a Lie bracket
[F,G]=F.(G) - G.(F) e L,

where the Fréchet derivative H, for any H € £ is defined as

_ Hl*u Hl*v
H* B ( HZ*u HZ*v ) ’

Thus £ has a structure of an infinite dimensional Lie algebra over C.
The subalgebra of symmetries of equation (5.17) is the centraliser C(F)
of Fin L (cf. section 5.2.1).
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The evolutionary system (5.17) defines a derivation D : R — R
DF(a) = a*u(Fl) + a*v(F2)7

which is also a derivation of the Lie algebra £. This derivation we often
denote as D;. In this notation the derivation D, coincides with D,,, and
D, + D, with Dy.
The ring R has several gradings. Here we define a monomial degree
grading
R=ERF, R*={aeR|Dua=ka}.
keN
We say that a = o(R") if a € @, RF.
The Lie algebra £ inherits the gradings of R. A monomial degree
grading
L= @ £, c£F={HeL|DH=(k+1)H},
kGZzU
and thus [£P, £7] C L£P19 is convenient for the definition of approximate
symmetries. For H € £ we say that H = o(L") if H € @,., L*.

Approximate symmetries of equation (5.17) of degree n are defined as
elements of the approximate centraliser

CL(F)={G € L|[F,G] =o(L"" ")},

which is a subalgebra of L.

The weighted gradation is useful for the study of homogeneous systems.
We assign weights w = (w,,w,) with rational entries to the vector
variable u and define a linear operator

W:(quu+vav+Xu+X,,)<(l) ?)_(u())u u?)
v

with spectrum Sw = {(p—1)wu+(¢—1)wy+7|p,q,7 € Z>o, p+q > 0}.
Then the linear subspaces £, in the decomposition

L= L., Lu={HeL|WH=pH}
HESW
satisfy
(L0, L) C Loy (5.18)

The elements of £,, we call w-homogeneous differential polynomial
vectors of weight p.
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For example, if the weight vector of variables (u,v) is w = (1/2,1),
then

(%51
ug + 3uvy 4+ vu; — 3uug

is a w homogencous element of weight 3/2, indeed F € L3/5.
If F € £, is a homogencous vector, then D is a homogeneous deriva-
tion of weight pu:

DgL, C l:,,.HL, Fe Eﬂ.

From (5.18) there immediately follows

Proposition 2 Let G=G,, + -+ G,,, , and G, € L, be a generator
of a symmetry of a homogeneous equation, then each w homogeneous
component Gy, is a generator of a symmetry.

For the evolutionary system (5.17) a recursion operator (a formal re-
cursion operator) A can be defined as a differential or pseudo-differential
operator (or a formal scries)

A=MDF A DY A € Matgyo(R)
which satisfies the following operator equation
Dr(A)=F,0oA—-AoF, (5.19)

(compare with Definition 5). If the action of A is well defined on a
symmetry Gi, i.e. Ga = A(G;) € L, then Gy is a new symmetry of
the evolutionary system (5.17). Starting from a “seed” symmetry G,
one can build up an infinite hierarchy of symmetries G,4+; = A"(Gy),
provided that each action of A produces an element of L.

The symbolic representation of the ring R generated by two indepen-
dent variables u, v is quite straightforward. It is a C-linear isomorphism
which it is sufficient to define for the monomials. Suppose we have a
monomial u®v%. Let the symbolic representation for the monomial u®
be @l*la(¢y, . .. +€lal) where a(§1,...,§jq|) is a symmetrical polynomial
(see Definition 6). Acting by the same rule, but reserving a set of vari-
ables (1, (g, ... (instead of &;,&,,...) for the symbolic representation of
v-monomials we get v? — o81b(¢y, . .. ,Cja))- Then

w o — @l oPla(e, L gab(Cr- - Gap) -

Note that the symbol obtained is invariant with respect to the direct
product of two permutation groups Sfa] X Slcﬁl'
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To the product of two elements f,g € R with symbols

f=a™0aléy, ... 6n,C1y o, Gm) and g — wPOI0(&r, ..., 6py Gy e Gg)

corresponds:

fg [ ﬁn+p®m+q<<a'('£17"'a's'naCla"',C‘m)
b(€n+la ey £n+p7 <m+1, ey Cm+q)>3i+p>34 3 (520)

m+q

where the symmetrisation operation is taken with respect to permuta-
tions of all arguments £ and then ¢ (the symmetrisation can be made in
any order).

If f € R has a symbol f +— 4"0™a(&1,...,€n,C1y. ., (m), then the
symbolic representation for the derivative D, (f) is:

Da:(f)'_’anﬁm(é.l ++§n+<1 ++<m)a(€17a§nacl’~7gm.)

To the operator D, we shall assign a special symbol 7 satisfying the
following composition rule (the Leibnitz rule)

noanf)ma(gli‘“)gnv{h”')gm)
= 4"0™a(&1, . ény Gy )&t e+ G ).

For f € R with symbol f — a™0™a(&1,...,&n, 1,y - - -, Gn) the symbolic
representation of the Fréchet derivative (5.16) is

f*u | ﬁ‘n‘lﬁmna(é-l’ s agn—lana Clw . '7<77L)7
f*v — ﬁ"f}m_lma(fl, . 7§naCla .. .,Cm_l,n) .

5.3 Integrability of evolutionary equations

5.3.1 Study of symmetries of evolutionary equations in
symbolic representation

Using the above symbolic representation of the Lie bracket we can study
the properties of symmetries in great detail.

Theorem 2 Let the right hand side of evolutionary equation (5.7) have
symbolic representation

F— aw(&1) + 0%a1(&1, &) + @Paa (&, &0, 63) + -+

and the degree of polynomial w(&1) be greater than 1. If
G — Q&) + 0P A1 (&1, &) + 8P Ax(61,62,&3) + -+ (5.21)
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s a symmetry, then its coefficients can be found recursively

Q
A1(&1,82) = %al(&,&) (5.22)
Am—1(&1,8m) = m(GQ(ilwwgm)am—l(gla r&m)
m—2 m—1
+y <(j + DA &y Y Ga1)amor1-5 (&t bm)  (5:23)
=1 1=
J
—(m = )am-1-3 (€1, - Em-1-5, Y Em—1)Aj (Em—jy - - ,ﬁm)> )»
=0 sfn
where
G (1, Em) = (3 ) = 3 (). (5.24)
n=1 n=1

Proof: The proof of the Theorem is straightforward (see, for example
[29]). Using (5.14) we can compute the Lie bracket between F and
G. When it vanishes up to R2, we express A1(&1,&2) from the result,
which leads to formula (5.22). The Lie bracket vanishing up to R™ is
equivalent to formula (5.23). O

Corollary 1 For the equation stated in Theorem 2, (i) any symmetry
has a linear part, that is, Q(&1) # 0; (ii) the algebra of symmetries is
commutative.

Proof: (i). Let us assume that (&) = 0. Then it follows from (5.22)
that A;(&1,€2) = 0. Assuming that Ay =0 forall 1 <k <m —1, we
get from (5.23) that A,,—; = 0. Thus by induction, we get G = 0.

(i1). The commutator of two symmetries is a symmetry due to the Ja-
cobi identity, but it does not contain a linear part. Thus it must vanish. (]

Theorem 2 states that a symmetry of an equation is uniquely deter-
mined by its linear part (i.e. dispersion). For fixed ©(£;) all coefficients
in the series (5.21) can be found recursively. Theorem 2 does not mean
that any evolutionary equation has a symmetry. The right hand side of
(5.21) must represent a valid symbol, i.e., an element of R. Thus:

a. all coeflicients A, (&1, ..,&m+1) must be polynomial,
b. there should be a finite number of non-vanishing coefficients A,,.
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In general, as follows from (5.22) and (5.23), the coefficients A are
rational functions - they have denominators G¥. In order to define a
symbol of a symmetry, these denominators must cancel with appropriate
factors in the numerators. Thus factorisation properties of the polyno-
mials G and G¥ are crucial for the structure of the symmetry algebra
of the equation.

Proposition 3 (F. Beukers [38]) For any positive integer m > 2 the
polynomial

hem =(§1+&+&+E&)™ — e — TG — e — e
where II}_ ¢; # 0, is irreducible over C.

Proof: Suppose that h., = A- B with A, and B two polynomials of
positive degree. Then the projective hypersurface ¥ given by he,, = 0
consists of two components ¥ 4,35 given by A = 0, B = 0 respectively.
The intersection ¥ 4 (| Ep consists of an infinite number of points, which
should be singularities of ¥ since

dh, dA dB
—em _ 2" B +A. — = 0.
dél d€2 LaNZs dEz TaNZs
Thus it suffices to show that ¥ has finitely many singular points.
We compute the singular points by setting the partial derivatives of

he.m equal to zero, i.e.,

G +&+&G+8)™ ! = (&)™ =0
(G+&+E&G+E&)m ! — (&)™ 1 =0
(G +&+E&+E&)™ " —(es&3)™ =0
(G +&+E&+E)™ ! — (b)) =0

From these equations it follows in particular that

&1 =C0/cr, &2 =Cafca, &= (3/cs, &4 = Ca/ca,
where (im_l = 1and (1/c1 + C2/ca + (3/c3 + C4/ca = 1. For given
¢t =1---4, we get finitely many singular points. O
Corollary 2 The polynomials G¥ (&1, ... ,&,), ¢f. (5.24) are irreducible
forn > 4.

Proof: Let w(€) = a™&™+---+ag. If 0 < m <1 then G is a constant
and therefore irreducible. If m > 2 polynomial G* has the form

GY(&1y .. 6n) = amGUM (€1, E0) + ¢°.
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where deg(g¥) < m and

which is irreducible according to Proposition 3. O
Theorem 3 The algebra of symmetries of the evolutionary equation

n
ut=Zakuk+f(un_1,...,u):F, n>2 ap#0 (5.26)
k=0

where f(up—1,...,u) #0 and
flun,...,u) e P PRy (5.27)

m>3 p<n
is trivial, i.e., Cr(F) = Spang{u, F}.
Proof: In symbolic representation

Fr— aw(&)+ 0™ am (€, nrt) + 8 P ama1 (&1, &)+

where w(é1) = anll + -+ + @1&1 + ap. The condition (5.27) implies
m > 3 and deg(am(&1,- .-, &m+1)) < n.
A symmetry of (5.26) is of the form

G — Q&) + 02 A1 (61, &) + WP Ag (€1, Ea, &3) + 0t Az (€, €0, €3, E0) + -+

if it exists. We know that its linear part (£;) # 0 from Corollary 1. It
follows from (5.23) that Ak(&1,...,&k+1) = 0 for £ < m and
G &1y oy Emt)
Ap(&ry- -y émir) = Go(€1, s Emet) am(&1y- e €mt1)- (5.28)
Suppose Q(§) # af + pw(€) for any a,3 € C. From Corollary 2,
we have that polynomials G(¢1, ..., Em+1) and G¥ (€1, ..., Emy1) are ir-
reducible and therefore they are co-prime. Since

deg(Gw(§17 ~~’§m+1)) =n> deg(am(é-h sy §m+l))a

the right hand side of (5.28) is a rational function (not a polynomial).
Thus there are no symmetries under the assumption.

When Q&) = af + Bw(§) for some a,3 € C, it follows from (5.23)
that G = au; + BF € Spang{u, F'}. O

According to Definition 3, equation (5.26) is not integrable. In (5.27)
condition p < n is essential. Indeed, the equation

U = Ug + umuf
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(p = n = 2) is integrable for any m.

If an evolutionary equation (5.7) with linear part of order 2 or higher
has a nontrivial symmetry, then any approximate symmetry of degree 3
is amendable to any degree. Thus, if we have infinitely many approxi-
mate symmetries of degree 3, then we have infinitely many approximate
symmetries of arbitrarily high degree.

Theorem 4 Let w(&1) be a polynomial of degree greater than 1. Assume
that the evolutionary equation (5.7) with linear terms tw(&1) has a non-
trivial symmetry. Then for an approzimate symmetry 23:1 hj, h; €
R?, of degree 3, there exists a unique H = Y1 iy hy € R7, such that
H s an approzimate symmetry of any degree.

This Theorem is the direct consequence of a more general Theorem
2.3 in [26] (see also Theorem 2.76 p.27 [25]) formulated in the context
of filtered Lie modules. According to Theorem 2.3, in application to an
evolutionary equation (5.7) with linear terms 4w(&;), we should require
that the polynomials G* (1, ..., &my1) and polynomials G(€y, ..., Emtr)
defined by (5.24) have no common factors for some m > 1. This is the
case for m = 3 as follows from Corollary 2.

The result of Theorem 4 confirms the remark made in [36]:

Another interesting fact regarding the symmetry structure of evolution equa-
tions is that in all known cases the existence of one generalised symmetry
implies the existence of infinitely many. (However, this has not been proved
in general.)

For systems of equations and for non-evolutionary equations the con-
jecture that the existence of one symmetry implies the existence of (in-
finitely many) others has been disproved. In [7] it was shown that the
example given in [6] is indeed a counterexample to the conjecture (see
also [9]). Even a rectified conjecture [39] that for N-component equa-
tions one needs N symmetries is incorrect. An example of a system of
two equations possessing exactly two nontrivial symmetries is given in
8]

These examples do not contradict the spirit of our Theorem 4 since
they are based upon the nonexistence of approximate symmetries of
degree 2, which is one of the conditions in the theorem.

As we have already mentioned above, the existence of a formal re-
cursion operator A (5.12) for an evolutionary equation is a necessary
condition for the existence of an infinite hierarchy of symmetries. A
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similar, but not equivalent, theorem can be stated in the symbolic rep-
resentation. The difference is in the natural ordering. In the standard
representation the coefficients [ are ordered by the power of D'wc in the
formal series A (5.12). In the symbolic representation the natural or-
dering is by the power of symbol 4. The fact that [ must be local, i.e.
lx € R in the symbolic representation, suggests the following definition:

Definition 7 We say that a function by, (&1, ..., Em,n), m > 1 is k-local
if in the expansion as n — oo

bm(§17 agmvn) = ﬂml(éla aém)ﬂnm + /Bm2(§1, ""ém)nnm—l + -

the first k coefficients Bms (€1, .., &m), $ = 1,..., k are symmetric polyno-
mials in &, ...,&n. We say that by, (&1, ...,&m,n) is local if it is k-local
for any k.

The existence of an infinite hierarchy of symmetries implies the exis-
tence of a formal recursion operator with local coefficients (Proposition
3 in [29]). The existence of an infinite hierarchy of approximate symme-
tries of degree N implies that the first N — 1 coefficients of the formal
recursion operator are local. The details of the proof of the following
Theorem can be found in [29] (Proposition 3).

Theorem 5 Suppose equation (5.7) has an infinite hierarchy of approz-
imate symmetries of degree N

Ug, = ﬂQz(fl) +Zﬁj+1Ai]’(§1,. .. 7£j+1) = Gi, 1=1,2,...
j21

where ;(€1) are polynomials of degree m; and m; < mg < --- < m; <
--+. Then the coefficients ¢m (&1, .oy €Em, 1), m = 1,..., N—1 of the formal
recursion operator

A=n+a¢1(&,n) + @¢2(6r,E2,m) + - -
are local.

In symbolic representation equation (5.13) can be solved [29] in the
sense that the coefficients of a formal series A can be found recursively
for any evolutionary equation (5.7):

Theorem 6 Let ¢(n) be an arbitrary function and the formal series

A = ¢(n) + a1 (€1,m) + @P2d2(&1, E2,m) + W33 (€, &2, E3,m) + -+ -
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be a solution of equation (5.13), then its coefficients ¢ (€1, ..., &m, M) can
be found recursively

2(o(n + &) — ¢(n))

$1(&1,m) = IR a1(&1,m)
1

Sm (&1 &mym) = m((m+ D(o(m+& + ... +&m)
_¢(n))am(£la'“7§man)

m—1
+ Z <n¢n(§17 wbne1,n + -+ &m, n)am—n(fru -wém)

n=1
+(m"'n+ 1)¢n(£1a--’£nvn+ Z é-l)am—n(gn-kla-',gman)

l=n+1

_(m —n + 1)am—n(§n+l’ "a§m7n + Zgl)d)n(fh .ey 61’17”))315")
=1

The existence of a formal recursion operator with local coefficients is
a necessary condition for the existence of an infinite hierarchy of symme-
tries. It suggests the following test for integrability of equations (5.7):

e Find a first few coefficients ¢, (&1, ...,&n,n) (the first three nontrivial
coefficients ¢, were sufficient for the analysis in all cases known to
us).

e Expand these coefficients in series of 1/n

¢n(£17 ~~-7§n777) = Z q)ns(gla --',$n>7]_s
S=8n
and check that the functions ®,(1,...,&,) are polynomials (not ra-

tional functions).

This test will be extended and used for non-local and non-evolutionary
equations in sections 5.4.1 and 5.4.2.

5.3.2 Global classification of integrable homogeneous
evolutionary equations

In this section, we give the ultimate global classification of integrable
equations of the form

Ut = Un + ft,- - Up_1), n>?2 (5.29)
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where u, + f(u, -+ ,un—1) is a A-homogeneous differential polynomial
and A > 0. We give a complete description of integrable equations for
all n.

Theorem 4 implies that if equation (5.29) possesses one higher sym-
metry and infinitely many approximate symmetries of degree 3, then it
possesses infinitely many approximate symmetries of any degree. There-
fore to classify integrable equations (5.29) it suffices to classify equations
which possess infinitely many degree 3 approximate symmetries and then
impose the condition of existence of at least one exact symmetry. The
classification has been done in the case of A-homogeneous equations with
A > 0. In the case A > 0 see the details in [26], while in the case A =0
the details can be found in [27].

Now we sketch the results for the case A > 0 without the detailed
proofs. The following statement on factorisation properties of the poly-
nomials G¥)(¢,,...,&,) (5.25) plays an important role in the classifica-
tion of integrable equations:

Theorem 7 G (¢&1,...,&,) = tFg®) | where (g(k),g(l)) =1 for all
k<1, and t*) is one of the following cases.
o n=2:
- k=0 (mod 2).’ 61{2
- k=3 (HlOd 6).’ flﬁz(fl +§2)
— k=5 (mod 6): £&(& +&)(EF + &6+ €3)
— k=1 (mod 6): &€& (& + &) (EF+ &1+ £3)2

k=0 (mod 2): 1
— k=1 (mod 2): (&1 + &) (&1 + &3) (€2 + £3)

For n > 3 the statement follows from the more general Theorem 3. For
n = 3, it has been proven by Beukers and was published in [25, 26] with
his kind permission. The case n = 2 has a quite remarkable history.
In affine co-ordinates z = & /€& we have G¥)(£1,&) = €5P,(z) and
the problem reduces to factorisation properties of the Cauchy-Liouville-
Mirimanoff polynomials

P.(z) =1 +ax)* —zF 1.

The common factors Py = x(1 + 2)*(1 + = + 22)?¢®) (z) and their pe-
riodicity were established in the joint report of Cauchy and Liouville
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[40]. Using Diophantine approximation theory Beukers has shown that
the factors g(*), (™) are co-prime for k # m [41]. Beukers also con-
jectured that the factors g(®) are irreducible over Q. For prime p the
irreducibility of g() over Q was earlier conjectured by Mirimanoff [42].
Remarkable progress towards the proof of the Mirimanoff conjecture has
been recently achieved in [43].

We now consider A-homogeneous equations of the form

U =tun+fotfat--, fieR (5.30)
—  dag(&1) + 4%a1 (€1, &) + WPaz (€1, €0, &3) + 0,

where n > 2, A > 0 and the degree of a polynomial a; is n — jA. Note
that if A is not integer and i\ ¢ N, then a; = 0. This reduces the number
of relevant A to a finite set.

Let G € R be a nontrivial symmetry of (5.30). Then it is of the form

G=tun+g2+gs+-, GER
— QAo(&1) + 0P A1 (61, &) + 0P A2(61,&2,&3) + -,

where 2 < m # n and the degree of the polynomial A; is m — jA. For
all integers 7 > 0 the following formula holds
T

> latta;, 0 A ] = 0. (5.31)

i=0
Clearly we have [#ag,@Ag] = 0. The next equation to be solved is
[Gag, 4% A1]+[@%a1, @ Ag] = 0, which is trivially satisfied if equation (5.30)
has no quadratic terms: fo = 0. Let us concentrate on the case fo # 0.
In this case, using Theorem 4, we see that the existence of a symmetry
is uniquely determined by the existence of its quadratic term [25, 26].

We now make a very interesting observation. Assume n and g are

both odd. Let us compute the symmetry of equation (5.30) with linear
term ug. Its quadratic terms, cf. (5.31), have the following symbolic
expression

a1 (&2 + €160+ €3)°= gD (g1, 62)
g(n)(é-la{?)

Proposition 7 implies that A < 3+ 2min(s, '), where s’ = "—‘%ﬁ (mod 3)
and s = 9“;—3 (mod 3). We see that if expression (5.32) is a polynomial,
then it defines a symmetry Q = ug + Q2 + - - - since @ is determined
by its quadratic term Q2. The evolutionary equation defined by @ has
the same symmetries as equation (5.30). So instead of (5.30) we may

. (5.32)
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consider the equation given by @. The lowest possible ¢ is 2s + 3 for
s =0,1,2. Therefore we only need to consider A\-homogeneous equations
with A < 7 of orders not greater than 7.

A similar observation can be made for even n > 2. Suppose we have
found a nontrivial symmetry with quadratic term

a; G@
&1 g™

This immediately implies A < 2. Then the quadratic term 29—‘(‘,117 defines
a symmetry ) starting with uy. Therefore, we only need to find the
symmetries of equations of order 2 to get the complete classification of
symmetries of A-homogeneous scalar polynomial equations (with A < 2)
starting with an even linear term.

Finally, we analyse the case when equation (5.30) has no quadratic
terms. If a; = 0 for i = 1,---,5 — 1, then we look at the equation
[ﬁao,ﬁj-‘rlAj] + [ﬁj+laj,ﬂA0] = 0, i.e.

o Gy, €j41) ay
! G(n)(£17 7§j+l) '

From Proposition 7 and the proof of Theorem 3, we know there are no
symmetries for the equation when j > 3, or when j = 2 and n is even.
When j = 2 and n is odd, it can only have odd order symmetries. In
this case one can remark that if the equation possesses symmetries for
any m then it must possess a symmetry of order 3.

By now, we have proved the following

Theorem 8 A nontrivial symmetry of a A-homogeneous equation with
A > 0 is part of a hierarchy starting at order 2, 3, 5 or 7.

Only an equation with nonzero quadratic or cubic terms can have a
nontrivial symmetry. For each possible A > 0, we must find a third
order symmetry for a second order equation, a fifth order symmetry
for a third order equation, a seventh order symmetry for a fifth order
equation with quadratic terms, and a thirteenth order symmetry for
a seventh order equation with quadratic terms. The last case can be
easily reduced to the case of fifth order equations by determining the
quadratic terms of the equation. The details of this final computation
are described in [44].

Theorem 9 Let A > 0. Suppose that a A-homogeneous polynomial
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evolutionary equation
ut:un+f(u,-~-,un_1), n22

possesses nontrivial symmetries. Then it is a symmetry of one of the
following equations up to a transformation u — au, a € C:
Burgers equation

U = U + Ul
Korteweg—de Vries equation

Ut = uz + uw
Potential Korteweg—de Vries equation

Uy = U3z + uf
Modified Korteweg—de Vries equation

Ut = U3 + u2u1
Ibragimov-Shabat equation

U = ugz + 3ulug + 9uuf + 3utuy
Kaup-Kupershmidt equation
us = us + 10uugz + 25ujug + 20uuy

Potential Kaup-Kupershmidt equation
20 4

15
uy = us + 10uus + —u% + ?ul

2

Sawada-Kotera equation
us = us + 10uug + 10uug + 20u%u;

Potential Sawada-Kotera equation

20
uy = us + 10uug + ?u“;'

Kupershmidt Equation
Us = Us + dujug + 5u§ — 5u2u3 — 20 uuqug — 5qu + 5u4u1

Finally we note that all the considerations in this section can be ex-
tended to the case when the dependent variable u takes its values in some
associative non-commutative algebra (such as matrix, operator, Clifford,
and group algebras). A complete classification for A > 0 homogeneous
equations with linear leading term in the case of a non-commutative free
associative algebra was carried out in [28].
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5.4 Classification results for Non-local integrable equations

The perturbative symmetry approach in the symbolic representation
allows one to derive integrability conditions for certain types of non-
local equations. In this section we consider two types of such equations:
the Benjamin-Omno type and the Camassa-Holm type [29, 32].

The Benjamin-Ono equation reads

uy = H(uz) + 2uuy, (5.33)

where H denotes the Hilbert transform

1 /> fy) dy.

T )y —<

H(f) =

It is well known that the higher symmetries and conservation laws of

the Benjamin-Ono equation contain nested Hilbert transforms and thus

an appropriate extension of the differential ring R is required. The con-

struction of such an extension is similar to the one proposed by Mikhailov

and Yamilov in [45] for 2+ 1 dimensional equations (see also section 5.6).
The second example is the Camassa-Holm type equation:

my = cmuy +umy, m=u—uz, c€C\{0}. (5.34)

This equation is known to be integrable for ¢ = 2 [46] and for ¢ = 3 [47].
Equation (5.34) is not in the evolutionary form, but if we exclude one
of the dependent variables (say u) then we obtain a non-local equation

my = emA(my) + A(m)m,, A= (1- D)7} (5.35)

and again the ring extension is required.

The symbolic representation and the concept of quasi-locality [45] are
the key ideas in the extension of the symmetry approach to non-local
equations. In the definitions of all basic objects such as symmetries,
formal recursion operators, conservation laws etc., we replace the ring
of differential polynomials R by an appropriately extended ring. The
elements of this extended ring we call quasi-local polynomials (see details
in the next section). Symbolic representation gives us a simple criteria
to decide if a given expression belongs to the extended ring. In this
extended setting Theorem 2 and most of the results of Section 5.3.1
hold if we just replace “local” by “quasi-local” in the conditions and
statements.



184 A.V. Mikhailov, V.S. Novikov and Jing Ping Wang

5.4.1 Benjamin-Ono type equations and Intermediate long
wave equation

Let us consider the following sequence of ring extensions:

Rpgo =R, Rpgrer =Run|JHRur),

where the set H(Rpygn) is defined as H(Ru») = {H(a);a € Ryu~} and
the horizontal line denotes the ring closure. Each Ry» is a ring and the
index n indicates the nesting depth of the operator H:

Rpgo CRgyr CRyg2 C - CRyn C---C Ry~ =Ry.

The elements of Rgn, n > 1 we call quasi—local polynomials. The right
hand side of equation (5.33), its symmetries and densities of conservation
laws are quasi—local polynomials.

We now consider scalar evolutionary equations, whose right hand side
is a quasi-local polynomial

w=F FecRy. (5.36)

For the definition of its symmetry we replace R by Ry in Definition 2.
Actual computations in Ry lead to quite cumbersome calculations. On
the other hand, in the symbolic representation computations simplify
drastically and results can be neatly formulated.

In the symbolic representation the operator H is represented by
1sign(n). So the symbolic representation of the ring extensions is obvi-
ous. Suppose f € Ryo and

f—a"a(&,. .., ).
Then
H(f)— @"isign(& + -+ &n)alé, ..., &n).

In the extended ring all the definitions, such as the Fréchet derivative,

Lie bracket and approximate symmetries, are exactly the same as in

the local case. However, the symbols of elements of the extended ring

are symmetric sign-polynomials instead of symmetric polynomials. For

example, the symbolic representation of H(u,) and H(uH (u1)) is:
H(uy,) — Gisign(&)Er,

)
H(uH(w)) = == sign(é1 + &) (€1 sign(1) + &2 sign(€2))

The symbolic representation of the Benjamin-Ono equation (5.33) is

up = idsign(&1)€; + 4°(61 + &2).
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Counting the degrees of sign-polynomials we assume that deg( sign(&; +
&) =0

Theorem 2 for evolutionary equations and symmetries in Ry, in the
symbolic representation, remains the same with the only amendment
that all symbols now are sign-polynomials. To introduce a formal re-
cursion operator for equation (5.36) we introduce a notion of asymptot-
ically local functions, which generalises the notion of local functions, cf.
Definition 7:

Definition 8 A function a,(&1,...,&n,n) is called asymptotically local

if the coefficients anp(&1,...,&) and Gnp(&1,...,&n) of its expansion at

N — 00:

an(£17 Al gnv 77) = Z anp(glv Ml fn)’?_p + Z &np(£1$ ] gn) Szgn(n)n_p
DP=8n p=38n

are sign—polynomials, i.e. represent elements from the extended ring Ry .

In the above expansion we take into account sign(n+3 ; &) = sign(n)
as 1 — o0o.

Definition 9 A formal series

A = ¢(n) + a1 (€1,m) + WP p2(&1, Ea,m) + W33 (&1, &2, E3,m) + - -

is called a formal recursion operator of equation (5.36) if it satisfies
equation (5.13) and all its coefficients are asymptotically local.

Without loss of generality the function ¢(n) can be chosen as either
@(n) = n or ¢(n) = nsign(n).

As in the local case, we can solve equation (5.13) with respect to co-
efficients of the formal recursion operator and Proposition 6 holds. The
generalisation of Theorem 5 is straightforward, we just replace “local”
by asymptotically local.

For the Benjamin-Ono equation (5.33), the first coefficient ¢1(£1,7)
of the corresponding formal recursion operator

A= n +u¢1(§1777) +U2¢2(£1,£2,T}) + -
looks like

&1 (sign(&1) + sign(n)) 1

o +0(=)
and it is asymptotically local. One may easily check asymptotic locality
Of other CoefﬁCientS ¢2 (51 ) §27 n)a ¢3 (gl 3 §27 637 77)» seee

#1(&1,m) = sign(n) +
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In this setting we can classify the generalisation of Benjamin-Ono type
equations. Consider an equation of the form

wy = H(ug) + cruuy + coH(uuy) + csuH (uq) + caur H(u) +
+esH(uH (uy)) + ce H (u)H (u1), (5.37)

where ¢; are complex constants. The linear term of this equation coin-
cides with the linear term of the Benjamin-Ono equation and all possible
homogeneous terms are included if we suppose that H is a zero-weighted
operator W(H(f)) = W(f) and the weight of the variable u equals 2.
We also take into account that H2 = —1 and the Hilbert-Leibnitz rule

H(fg) = fH(g) +gH(f) + H(H(f)H(g))-
The following theorem holds (see the details and proof in [32]).

Theorem 10 An equation of the form (5.37) possesses an infinite hier-
archy of higher symmetries if and only if it is, up to the point transfor-
mation u +— au + bH(u), a® + b*> # 0 and re-scalings T — ax, t — f3t,
a,b,a, 3 € C, one of the list

uy = H(ug)+ Dgg(%clu2 + couH (u) — %cl (u)?); (5.38)
uy = H(ug)+ Dm(%clu2 + %CQH(’LLZ) —couH(u));  (5.39)
uy = H(ug) +tuuy £ H(uuy) FuH (u1) F 2u H(u)
—iH(uH (u1)); (5.40)
w = H(ug)+ H(uw) + ui H(u) £ iH(uH (uq))
+iH (u)H (uy). (5.41)

The proof of this theorem requires checking the quasi—locality of the
first three coefficients of the corresponding formal recursion operators.
Equations (5.38), (5.40) and (5.41) can be reduced to the Burgers equa-
tion. In the case c? + c3 # 0 equation (5.39) can be transformed into the
Benjamin-Ono equation (5.33). When c? +c3 = 0, it is equivalent to the
Burgers equation. The explicit forms of the transformations are in [32].
The properties of the Benjamin-Ono equation have been studied in [2].
Finally we draw attention to the intermediate long wave equation

e = =0 uy + 2uug + 7T (ug),

where ¢ is a real constant parameter and

T (u(z)) == %/_C: coth (2%(3: - y)) u(y)dy .
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This equation was derived by Joseph [48] as the equation describing
propagation of non-linear waves in a fluid of finite depth. The interme-
diate long wave equation is an intermediate between the Benjamin-Ono
and the Korteweg de Vries equations in the sense that the limit § — oo
yields the Benjamin-Ono equation, while § — 0 gives the KdV equation.
The intermediate long wave equation possesses an infinite hierarchy of
higher symmetries and is integrable by the inverse scattering method
[49]. As in the case of the Benjamin-Ono equation, all its higher sym-
metries contain nested 7 operators.

We counsider the general non-linear equation of the intermediate long
wave form with some linear operator 7

ue = T (uz) + 2uuy (5.42)

and address the question: for which linear operators 7 does this equation
possess an infinite hierarchy of higher symmetries/conservation laws? In
[49] Ablowitz et al have shown that if equation (5.42) possesses infinitely
many conservation laws then the conditions

T(uwTv+vTu) = (Tu)(Tv) — uv, (5.43)

oo
/ (uTv+vTu)dz =0
— 00

must be satisfied.

The perturbative symmetry approach allows us to derive conditions
for the operator 7 necessary for the existence of an infinite hierarchy of
higher symmetries. All the steps are similar to the case of Benjamin-Ono
type equations:

e Extend the differential ring by the operator 7 exactly in the same
way as we did with H and define Rz and its symbolic representation.

o Define higher symmetries in the extended ring Rr.

e Introduce a formal recursion operator and asymptotic locality of its
coeflicients.

Without going into the details (see [29] and [50]) we present the fol-
lowing statement:

Theorem 11 Assume that the operator T has the symbolic representa-
tion if(k):

T (u(z)) =i / oo fk)a(k)e* dk
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and that f(k) — 1, faster than any power of k™!, as k — +oo. Then
if equation (5.42) possesses a formal recursion operator with the first
three coefficients asymptotically local then f(k) satisfies the functional
equation:

fle+y) (f(@) + f(Y) = f()f(y) +1 (5-44)

Formula (5.44) is equivalent to (5.43) in the symbolic representation.
Its general odd solution, smooth on the real line except the origin, is
given by

(k) = coth(dk)

which corresponds to the intermediate long wave equation, and the lim-
iting case § — 400 corresponds to the Benjamin-Ono equation

f(k) = sign(k).

These are the only such equations possessing infinitely many conserva-
tion laws. The only even solution of (5.44) is

f(k) = const

leading to the Burgers equation (up to a re-scaling), which has no non-
trivial conservation laws.

5.4.2 Camassa-Holm type equations

We now apply the perturbative symmetry approach to determine inte-
grable cases of the Camassa-Holm type equation (5.35). It contains the
operator A = (1 — D2)~! and therefore we extend the differential ring
R by the operator A and define the A-extended ring R as we did for
Ry in section 5.4.1.

The symbolic representation of the operator A is A — ﬁg There-

fore if f € R with symbol 4"a(¢1,...,&,) then A(f) has the symbol

o a(€1,..,€n)

All the definitions remain the same as in the local case with the amend-
ment R — RAa.

We consider a formal recursion operator for the equation (5.35). First
of all we introduce a linear term to the equation (5.35) by the change of
variable m — m + 1 (note that A(1) = 1) and consider the equation:

me = cA(my) + emA(my) + A(m)my +my := F. (5.45)
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Its symbolic representation reads:
F i (&) + im*a(€1, €2),

where w(§;) = l—c_%, +&, a(é,&) = 26(11+ Z + ﬁé&@— The following
1
statement holds [32]:

Theorem 12 The first two coefficients of the formal recursion operator

A =+ g1 (&1, ) +MPPa(61,€2,m) +
for the equation (5.45) are quasi-local if and only if c =2 or c = 3.

The case ¢ = 2 corresponds to the Camassa-Holm equation, while the
case ¢ = 3 corresponds to the Degasperis-Processi equation. In fact, one
can show [51] that equation (5.45) (or equation (5.35)) with ¢ = 2 or
¢ = 3 possesses an infinite dimensional algebra of local higher symmetries
in variable m even if the equation is non-local.

5.5 Integrable Boussinesq type equations

In this section we give a brief account of our results (see details in [30,
31]) on integrable systems of the form:

{ e = o, (5.46)

Ut = QlUp—r + IB’U(] + F(uvuh vy Up—r—1,0, V1, "‘7vq—1))

where p > ¢ > r >0, a,8 € C. System (5.46) can be reduced to a
single second order (in time) non-evolutionary equation of order p:

Wit = Qwp + Pwg, ¢ + F(wr, Wry1, ..., Wp—1, Wi, W1, ¢y -+, Wg—1,¢t)

in the variable w, such that v = 0;w, v = w, and wy denotes 6§w. If
the function F' does not depend on v, vy, ..., v,—1 then one can eliminate
v from the second equation and rewrite the system in the form

Ut = QUp +ﬂut,q + K(’LL,Ul, U2y oeey Up—1, Ut, Ut 1, Ut,2, "'7ut,q—-l) ) (547)

where K = DL(F).
The famous integrable Boussinesq equation [52]

Utt = Uggzz T (uz)zz (548)
belongs to this class. Recently all integrable equations of the form

Utt = Ugza + F(U, Uz, Ugz, U, Ut z)
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have been classified and comprehensively studied in [53]. In particular,
it has been shown that equation

2
Wit = Wrag + W Wiz + Wep Wy — 3w1wzz

is integrable.

Sixth order (p = 6) integrable equations of the form (5.47) can be
obtained as reductions of the Sato hierarchies corresponding to KP, BKP
and CKP equations [54, 55] as well as derived from equations studied
by Drinfeld and Sokolov [56, 57].

A non-evolutionary equation

3 m
Ut = K(uvuwyuzzy e ,aIU,Ut,Utz,Utzz, e ’81 ut) ) (549)

can always be replaced by a system of two evolutionary equations

Uy = v,
vy = K (U, Uz, Uggy vy ONU U, Ugy Vs -y O0).

A non-evolutionary equation (5.49) may have other representations in
the evolutionary form. If K = D,(G), then the system of evolutionary
equations

U = Vg, vy =G.
also represents (5.49).

For example, eliminating variable v from the following systems
Case 1:

U=, U= Useez + (U)az, (5.50)

Case 2:
W=V, U= Uger + (U2, (5.51)

Case 3:
Ut =Vog, V= Ugp + 2, (5.52)

we obtain the same Boussinesq equation (5.48) on variable .

There is a subtle, but important difference between the above repre-
sentations of the Boussinesq equation (5.48). The system (5.50) has only
a finite number of local infinitesimal symmetries (i.e. symmetries whose
generators can be expressed in terms of u, v and a finite number of their
derivatives) while equations (5.51) and (5.52) have infinite hierarchies
of local symmetries. The reason is simple - infinitesimal symmetries of
equation (5.51), which depend on the variable v, cannot be expressed
in terms of u and its derivatives, since formally v = D_'u;. Equation
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(5.51) possesses only a finite number of symmetries that do not depend
explicitly on the variable v.

Homogeneous equations play a central role in the theory of integrable
equations.

Proposition 4 Let system (5.46) be w—homogeneous of weight 1, then
W = (Wy, Wy + 4 —7) and

i. if p is even, p=2n, n € N, then p = q = n,
i. fpisodd, p=2n+1, n€N, then 5=0, p=p/2, g=n+1.

The system (5.46) we will write in the vector form

w=F, F=(,f)T. (5.53)

T

Suppose G = (g,h)! is a generator of a symmetry, then

[F,G] =0 < D;(h) = Dr(g), Dc(f)=Dr(h).

It follows from the first equation that Dg(g) belongs to the image of D7
and thus the second component of the symmetry generator G can be
expressed as h = D;"(Dr(g)) and the symmetry is completely defined
by its first component. Substitution into the second equation yields

Di(9) - DiDc(f) = 0.
For approximate symmetry of degree n we obviously get
Dg(9) — D;Da(f) = o(R").

Using the above observation for systems (5.46) we can restrict the
action of the recursion operator to the first component of symmetries.

For example, if we represent the Boussinesq equation (5.48) in the
form of the evolutionary system (5.51), then

0 D,
F, = 3
D3 +2uDy+2u; 0
and it is easy to verify that a pseudo-differential operator

Ao v+ 2v1D;1 4D? + 2u+u; D1
Aoy 3U+’U1DI_1 ’

where Ag; = 4D 4 10uD2 + 15uy D, + Yua + 4u? + (2u3 + duuy) D!,
satisfies equation (5.19) and therefore is a recursion operator. We can
restrict the action of the recursion operator to the first component. If g,
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is the first component of a symmetry of the Boussinesq equation (5.51),
then

g2 =R(S) = (3v+2v1D; " + (4D2 + 2u+u1 D;")D, D) (g1)

is the first component of the next symmetry in the hierarchy. We call R
a restricted recursion operator.

A space-shift, generated by u; = (ul,vl)tr, is a symmetry of the
Boussinesq equation (5.51). Taking u; as a seed, we can construct an
infinite hierarchy gaxy1 = R¥(u1) of symmetries of weights 3k + 1,k =
0,1,2,.... For example,

gq = 4vsz + dvru + dvuy = 4D, (v2 + vu) .

We see that g4 is a total derivative and therefore g7 = R(g4) € R
is the next symmetry in the hierarchy, etc. The Boussinesq equation
itself is not a member of this hierarchy. If we take a seed symmetry,
corresponding to the time-translation (vy, ug+2uul)tr we obtain another
infinite hierarchy of symmetries gsgyo = R¥(v1),k = 0,1,2,.... The
Boussinesq equation does not have symmetries of weight 3k, k € N. One
can show that gsr+1 and gsx,2 are elements of the ring R for any k € N
and therefore R generates two infinite hierarchies of symmetries of the
Boussinesq equation. Moreover, all symmetries from both hierarchies
commute with each other.

In general, for the system (5.53) a recursion operator is completely
determined by its two entries A;; and Ajs (the first row of A). The
restricted recursion operator R for system (5.53) can be represented as

R=An+A2D;"D;.
In symbolic representation the system (5.46) takes the form
Uy = {)CL
0y = oty ™" + B¢ (5.54)
+ ZkZZ Zf:o az’f}k_zai,k—i(gla .y é'ia Cla [Xe} Ck—i)~

It follows from Proposition 4 that for w—homogeneous systems (5.46)
q = p/2 (for even p) and coefficients a; (&1, .. .,&,Ci,- .., (;) are homo-
geneous polynomials of degree

) L. } 1.
deg(aig) =p+ (= r = (i +j = Dwu + ( = )r = 5p,

in variables &1, ...,&:, i, ..., (;, and they are symmetric in &1, ..,&; and
in ¢1,...,¢;. If deg(a;j;) is not a non-negative integer, then a;; = 0.
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We shall assume that the weight w, > 0 and thus the sum in (5.54) is
finite due to only a finite number of non-zero coefficients a;;.

5.5.1 FEven order equations

In this section we study homogeneous (with a positive weight w, > 0)
even order (p = 2n) equations (5.46) assuming r = 1.
In symbolic representation such equations take the form

Uy = 0
b = aw1(§1) + w2 (C1) + @Paz0 (81, &2) + wban (€1, G)+  (5.55)
+92a02(C1, C2) + @Pazo(é1,€2,83) + - = f,

where w; (€1) = a&? ™! and wa(¢1) = B¢ and without loss of generality

we shall represent «a in the form

/1‘2_,32
4

o=

and use parameters p, 3 instead of «, 5.
Symmetries of the system (5.55) are determined by their first compo-
nent, which in symbolic representation can be written in the form

Gy = 491 (&) + 0Q(C1) + 42 Ao (€1, &2) + 00 A11 (61, Cr) +
+02A02(C1, G2) + 0P Aso (&1, &2,83) + -+,

where Q1(£1), Q2(¢1), Ay are polynomials. For fixed ©4(&1), Q2((1)
the coefficients A;; can be found recursively (there is a generalisation of
Theorem 2 to the case of many dependent variables [31]).

The Fréchet derivative F, of the system (5.53) with » = 1 in the
symbolic representation has the form

. 0 n >
F.=( . R
( f*,u f*,v

fern = w1 (n) + 20as0(€1,m) + Da11(n, (1) + 3i2aso(€r, E2,m) + - - -
fow = wo(n) + ta11(E1,m) + 20a02(C1,n) + @2ag: (€1, E2,7) + - -

where

A formal recursion operator can be defined as a 2 x 2 matrix R whose
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entries are formal series

Rix = oo(n) + diro(é1,m) + %@%1((1,7)) + @ oo (61, 62,m) +
+a0d11 (&1, Cl, 1) + 9202(C1, Go, ) +
Rz = too(n) + ?“/)10(517 1) + 0to1 (G, 1) + @*ao (€1, €2,7) +
+avy (fl,Cla )+ 0°02(Ciy C2om) + -+

and
Ry = n_lo(Rn,t-f-Rlzof*,u), Rgg = nhlo(Rllt+R12Of*,v+Rllo77)-
satisfying equation

R, = [F*, R]

and all the coefficients ¢;;,%;;, 1,5 = 0,1,2,... of the formal series R
and Ry, are local. An approximate recursion operator of degree k can
be viewed as a truncation of R (terms with 4‘67,i + j > k are omitted
or ignored), so the existence of an approximate recursion operator is a
necessary condition for the existence of a formal recursion operator and
also a necessary condition for the existence of an infinite hierarchy of
symmetries of the equation (5.55). For fixed ¢oo(n),%oo(n) the coefhi-
cients of a formal recursion operator can be found recursively, similar to
the case of one dependent variable (Theorem 6). The property of locality
of the coefficients imposes constraints on the coefficients of the equation
(5.55) and eventually leads to the isolation of integrable systems (see
details in [30]). The latter test was applied in [30] to the problem of
classification of even order w—-homogeneous integrable systems of the
form (5.55). The results obtained can be summarised as follows:

The 4th order equations

It is easy to see that a homogeneous system (5.46) with p = 4,r =1 is
linear if w, > 3. In the case w, = 3 the only possibility is F' = yu?, v #
0 which leads to a non-integrable equation for any choice of «, 3 and ~.
Thus the weight w,, can be equal to 2 or 1.

Case 1: The case w, = 2

The most general nonlinear homogeneous system of equations (5.46)
with p =4,r = 1,w, = 2 (correspondingly w, = 3) is of the form:

{ de="u (5.56)

v = aug + Bve + cruuy + couv,

where ¢y, ¢y are arbitrary constants and at least one of them is not zero.
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Without loss of generality we need to consider the following three
types of system (5.56):

w=uno, (5.57)
v = ‘“—&4 uz + Bua + cruug + couv, p ¢ {0,£6}

{ de=mu (5.58)
V¢ = V2 + ciuul + couv

{ we= (5.59)
U = — U3 + v2 + cruul + couv

2
The first system represents the generic case a ¢ {0, ——%}, while the
other two represent the degenerate cases.

Theorem 13 The system (5.57) possesses two formal recursion opera-

tors with ¢oo(n) = 1, Yoo(n) = 0 and ¢oo(n) = 0, oo(n) = n if and only
if B = co = 0. By re-scalings it can be put in the form

Ut = n
5.60

{ vy = u3 + 2uuq ( )
Systems (5.58) and (5.59) are not integrable; they do not possess a for-
mal recursion operator with ¢oo = 0, Yoo = 1 unless ¢c; = c3 = 0.

System (5.60) represents the Boussinesq equation (5.48), which is known
to be integrable. In the Proposition 13 and below by re-scalings we mean
an invertible change of variable of the form:

U U, UV aaU, T a3k, t—agt, a; € C.

Case 2: The case w, =1
The most general homogeneous system of equations (5.46) with p =
4,r =1,w, = 1 is of the form

Uy = V1
vp = aus + Bua + cruug + cou? + c3urv + cquvy + csv? (5.61)
+06u2u1 + C7u2v + Cgu4

where ¢;, i = 1...8 are arbitrary constants and we assume that at least
one of the coeflicients cq,...,cs is not zero. Without loss of generality
we consider the following three types of the system (5.61):

U = V1
2 2
vy = %ﬂug + Bug + cruuy + cou? + czuv + cquvy + csv? (5.62)

2 2 4
+cgu“ul + cruv + cgu”,
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where p ¢ {0,238}, u,8 € C and

Ut = U1

vp = V2 + cruug + cou? + cauiv + cquv; + csv? (5.63)
+c6u2u1 + C7U2’U + csu4

Uy = V1

v = -—%u;; + vg + cruug + cou? + caurv + cquvy  (5.64)
+es5v2 + cgulug + crulv + cgul

Theorem 14 The system (5.62) possesses two formal recursion opera-

tors with ¢oo(n) =, Yoo(n) = 0 and ¢oo(n) = 0, Yoo(n) = n if and only
if (up to re-scalings) it is one of the list

{ Z: : Z; +u? (5.65)
{ Z: _ Z;I; + 2uiv + 20 (5.66)
{ :tt : Z; + 2uqv + 4duv; — 6uluy (5.67)
{ z: :Z; + duuy + 3u2 — 02 + 6ulu; + u (5.68)

Ut = U1
vr = aug + ve + 4auuz + 3au? + uyv + 2uv; —v?  (5.69)
+6au®uy + uv + aut, a # —1

The system (5.63) possesses a formal recursion operator with ¢go(n) = 0,
Yoo(n) = n if and only if (up to re-scalings) it is one of the list

Ut = V1
5.70
{ vy = Vo + 2uv; ( )
Ut ="n
5.71
{vtzvg—u%-i-Qulv-—vz ( )
Ut =
5.72
{ vy = v2 — 2uug — 2u? + 2ugv + 6uv; — 12y, ( )

The system (5.64) possesses two formal recursion operators with ¢oo(n) =
7, Yoo(n) = 0 and ¢oo(n) = 0, Yoo(n) = n if and only if (up to re-
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scalings) it is

Uy = U1
vy = —%ug + Vg — UUy — %u:{ + uv + 2uv; — v? (5.73)
—%u2u1 +u?v — iu“.
Equation (5.65) is a potential version of the Boussinesq equation. Equa-
tions (5.66) and (5.67) are known to be integrable. Corresponding Lax
representations and references can be found in [4].
Equations (5.68) and (5.69) can be mapped into linear equations

Wy = W4 , Wy = QW4 + Wo

respectively by the Cole-Hopf transformation u = (logw).
Equation (5.70) can be reduced to the Burgers equation with time
independent forcing

Uy = U + 2uu; + wq , wy =0

by the invertible transformation v = w + u; + u?. The latter can be
linearised by the Cole-Hopf transformation.
Equation (5.71) can be reduced to the system

U = U + Wi, wt=—w2
by a simple invertible change of the variable, v = w + u;. The system
(5.71) provides an example of an equation that possesses neither higher
symmetries nor a recursion operator. However, a formal recursion op-
erator does exist and therefore it is in the list of the Proposition. Its
integration can be reduced to the integration of a linear nonhomogeneous
heat equation with a source term of a special form.

By a simple shift of the variable v = w + u; + 2u?, system (5.72) can
be transformed to the form

Uy = ug + duuy + wy , wy = 2D (uw). (5.74)

The system (5.72) possesses an infinite hierarchy of symmetries of all
orders generated by a recursion operator

R=—2u+2uD;' + D:D;*

starting from the seed u;.
Equation (5.73) is a particular case of (5.69) corresponding to the
exceptional case a = —

FN.
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The 6th order equations

Homogeneous 6th order (p = 6) equations (5.46) with non-zero quadratic
terms correspond to w, < 5. We restrict ourselves to the case w, > 0.
The weights 3,4, 5 do not lead to integrable equations:

Proposition 5 For weights w, = 3,4,5 there are no equations possess-
g a formal recursion operator.

Case 1: The case w, =2
The most general homogeneous system (5.46) with p = 6,7 = 1,w, =
2 can be written as

Ut = N1
ve = aus + Bvz + Dy(cruug + cau? + csu®) (5.75)
+c3uvy + cqvug,

where «, 3,¢;,1 = 1,...,4 are arbitrary constants and we assume that
at least one of ¢1,..., ¢4 is not zero.

Without loss of generality we consider the following three types of the
above system:

Uy = U1
ve = E28%00 1 Bug + Dy(cruus + coul + csud)  (5.76)
+c3uvy + cqvur, B ¢ {07 iﬁ}v /1'7;6 cC
Uy = U1
5.77
{ vy = v3 + Dy(cruug + cou? + csu®) + cauvy + cqvug ( )
Ut = V1
vy = —iU5 +v3 + Dy(cruug + CQU% + 05U3) (5.78)

+c3uvy + c4vuy

Theorem 15 If system (5.76) possesses two formal recursion operators

with ¢oo(n) = 1, Poo(n) = 0 and ¢oo(n) = 0, Yoo(n) = n then, up to
re-scalings, it is one of the list

ut = v

5.79

{ vy = 2us + vz + Dy (2uug + u? + %u3) ( )
Us = U1

5.80

{ vy = us + v3 + Do (uug + uv + 3u?) (5.80)
Uy =01

: 5.81

{ vt = %U5 + v3 + Dy (2uug + %u% + 2uv + %u3) ( )
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If system (5.77) possesses a formal recursion operator with ¢oo(n) = 0,
Yoo(n) = n then, up to re-scalings, it is one of the list

{ Ut = (5.82)

vy = v3 + uv] + uqv

ut = N1

{ vy = v3 + 2uus + duus — dugv — 8uvy — 24uu; (5.83)
The system (5.78) does not possess a formal recursion operator for any
non-trivial choice of c;.

Recursion operators and bi-Hamiltonian structures for these equations
can be found in [30]. Lax representations can be found in [56, 57, 58,
30, 59].

Case 2: The case w, =1

Homogeneous systems of equations (5.46) with p = 6,r = 1,w, =1
can be written in the form:

Uy = V1

vy = aus + Bus + c1uf + courug + czung + cauzv + csuivy (5.84)
+cguva + c70? + cgud + couurus + croulus + eriutvr+ ‘
+cirouuv + clquu% + cl4u3u2 + cl5u3v + 016u4u1 + c17u6,

where o, € C, all ¢;,7 =1,...,17 are arbitrary constants and at least
one of ¢1,...cy is not zero.
We need to consider the following cases of the system (5.84):

Uy = V1
2 52
Vg = ”—f——us + Bus + c1u3 + couuz + czuuy + cquav
+e5urv1 + ceuvy + c7v? + cgud + +couuiug + crouuz  (5.85)
+011u2v1 + crpuulv + 013u2u% + cl4u3u;)

+c15u3v + 016u4u1 + c17u6

where p ¢ {0, £8}, u, 8 € C, and

Uy =M
U = V3 + clug + Ccou1u3 + C3uUg + C4U2V + CrUL VY (5 86)
0 .
+eeuva + c7v? + cgu + couuqus + crouugz + crpulv;

“+crouuiv + clguzurf + c14u3u2 + c15u3v + c16u4u1 + cl7u6

Uy = V1

1
V¢ = — U5 + U3 + C1U3 + CoUrUs + C3UU4 + C4UV + C5ULY
+cguvy + c7v? + Csu? + couuius + crouus + criulvy

+crouuv + clquu% + cl4u3u2 + c15u3v + 016u4u1 + cl7u6

{5.87)
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Theorem 16 If system (5.85) possesses two formal recursion operators

with ¢oo(n) = m, Yoo(n) = 0, and ¢oo(n) = 0, Yoo(n) = n, up to re-
scalings, it is one of the equations in the following list

{ R, 4,3 (5.88)

v = 2us + v3 + u3 + 2urug + Ul

e
o~
Il

(5.89)
us +v3 +ujuz + vy + u1

= s
I
Rl U‘I'-'Q

(5.90)
vy = zus + 3 + 2ujuz + u2 + 2uqv1 + ul

+3uv; + 3uv, — v + 15au1 + 15au? u3+ (5.91)
+60auuque + 3uuqv + 3uv; + 45au? ul

U = 1y
[ vy = aus + v3 + 10au2 + 15aujuz + 6auuy + vus
+200uPug + udv + 15autu; + oub, a # -1

Uy = V1
vr = us + 6uug + 15u1uz + 10u? — v? + 15uusz+ (5.92)
+ 15u3 + 60uu us + 45u?u? + 20uug + 15uu; + ub

If system (5.86) possesses a formal recursion operator with ¢oo(n) =
0, ¥oo(n) = 7, up to re-scalings, it is one of the list

{ te=n (5.93)
Vg = U3 + U1
Ut = V1
5.94
{ vy = v3 + 3uqv; + 3uvg + 3uln; ( )
Uy = V1
{ v = v3 — u3 + 2ugv — v? (5.95)

If system (5.87) possesses two formal recursion operators with ¢oo(n) =
1, Yoo(n) = 0, and doo(n) = 0, oo(n) =1, up to re-scalings, then it is

Ut = U1
vy = —qus + vz — Sud — Lujuz — %uw + vug
2 15,3 _ 15 1 (5.96)
+3uv1 + 3uvy — v — 4 ZFuy — 4 1502u3 — 15uuqus + 3uugv

+3uv; — @u%l — 5ulug + udv — 1T5u4u1 — %uﬁ
Recursion operators, bi-Hamiltonian structures and Lax representations
of equations (5.88), (5.89), (5.90) and (5.93) are discussed in detail in
[30].
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Equations (5.91),(5.92),(5.94) and (5.96) can be linearised by a Cole-
Hopf type transformation [30].

Equation (5.95) has similar properties to system (5.71). It can also
be reduced to a triangular system

2
Uy = uz + wi, Wy = —W

in variables v and w = v — us.

10th order equations

In this section we present three examples of 10th order integrable non-
evolutionary equations.

Proposition 6 The following systems possess infinite hierarchies of
higher symmetries:

(ur =1

vy = 6%ug +vs + Dy (3uu6 + Quius + —u2u4 + 3 u3+

+2u1v1 + duvg + 20uug + 80uuiuz + 60uus + 88u1 ) (5.97)

42003y, 4 384,22 4 10245

Ut = V1

vy = —gqto + Us + Suruy + Jueus + Susus + Bud (5.98)
—bugv; — —,?uzvg — 10uv3 — ﬁug,ur“l’ — %uluQu‘;
—2uduy — Dudus + Ludvy + ZBugud + E5uZud — 4843

Uy = V1

vy = Us + 2uous + 6ugug — 6uzv — 22usv; — 30U 09
—20uvs + 96uu v + 96uv; + 120D, (4uuy + 6uu?)
—2D,(8u%ug + 32uuiug + 13uuy + 24uud) — 3840utu,

(5.99)

Bi-Hamiltonian structures and recursion operators for equations (5.97),
(5.98) and (5.99) as well as the Lax representation for equation (5.97)
can be found in [30]. The system (5.99) has been considered indepen-
dently by the authors of [59, 60] and [61], where the corresponding Lax
representation has been obtained. The Lax representation for equation
(5.98) is still not known.

5.5.2 Odd order equations

In this section we formulate the diagonalisation method and globally
classify homogeneous (with a positive weight w, > 0) odd order (p =
2n + 1) equations (5.46) in the same spirit as we did for the scalar
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homogeneous evolution equations in Section 5.3. For the details, we
refer the reader to the recent paper [31].
A symmetry of an odd order homogeneous equation (5.46) always
starts with linear terms. A homogeneous symmetry in the symbolic
m-r

representation starts either with ué{® or with v(;"™". Without loss of
generality we have

S
ur = G =ufl" + Zzujvs_jA],s—j(flv &35 C1y o Csmg)y m>1
s>2 j=0
(5.100)

or

S
ur =G =" + Z Zujvs_jAj,s_j(.fl, &0, G—j)y m>0
§>2 =0
(5.101)
The functions A; ;(&1,...,&,C1,...,¢;) in (5.100) and (5.101) are ho-
mogeneous polynomials in their variables, symmetric with respect to
arguments &1,...,& and (1,...,{;. These functions can be explicitly
determined in the terms of the system (5.54), the symbolic representa-
tion of system (5.46), from the compatibility conditions.
Let us first concentrate on how to compute the Lie bracket between
the linear part of system (5.54) denoted by K!, i.c.

1_ %S _ u _ 0 n
()1 (2)e (e D)

and any pair of differential polynomials. We know its symbolic repre-
sentation takes a simple and elegant form if the matrix L is diagonal
[23]. Inspired by this, we shall diagonalise matrix L, produce the re-
quired formula in new variables and then transform back to the original
variables.

Notice that matrix L has two eigenvalues :l:n"*é. Therefore, there
exists a linear transformation

such that
T-'LT = diag(n™*2, —y"+2).

Let us introduce new variables @ and ©

u\ _op ) u+v
v - P - E ;l+%—7' B f)C{H_%_T .
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Equally, we have

(0)=r (o) =3 (i ).

The new variables @ and © have the same weight, i.e., wg = wy = wy.
Without causing confusion we assign the same symbols £ and ¢ for the
symbolic representation of the ring generated by @, v and their deriva-
tives. The exponents of symbols can be half-integer, which corresponds
to half-differentiation in z-space.

(SR~

Proposition 7 In variables @ and v, system (5.54) takes the form

N . onti S Alas—[~
{ U = Ufl 2+ 2_19_ ZSZQ Z;:() alos ldl,s—l(&lv --,flagl, --aCs—l)

. Nt Al ns—] A
U = _DCI c - i 522 Z?:O ‘o lal»S*l(glv"7§l1<17'~7<s—-l)

where g = (&1 +--+E+C +--- +Cs_z)"+%_r and a;.s—; are defined in
terms of @i s—i(€1y ..., &y Clye oy Cs—i)y, 1 =0,...,5 as follows:

&l,s—l(éla "'a glv C] 3 ooy CS*Z) = Zf:o Z;n:irylrl{(ji%07l_s+i} Cfci:f
(_1)S_1’_l+p<<a'1,,s—i(£lv ey épv Cl) ey C’i—pa §p+17 ceey gla Ci—p-i—lv () Cs—l)

(fp—i—l t 5]'Ci—p+l c Cs—l)n+%_r>sf>3§ )

—1
where Cij are binomial coefficients defined by C{ = ﬁlj),

In variables @ and ¢, the linear parts of symmetries (5.100) and (5.101)
of system (5.46) are also diagonal matrices. We can now derive the
symmetry conditions for the transformed forms as in Theorem 2 for
the scalar case. This leads to the explicit recursive relations between
symmetry (5.100) or (5.101) and system (5.46).

With explicit formulas at hand, we can prove the following theorem,
crucial for global classification:

Theorem 17 Assume the homogeneous system (5.46) (p = 2n+1) with
wy > 0 possesses a symmetry. Suppose there is another system of the
same weight and of the same form

Ut = 1’({.7
) o 5.102
{ Vy = Uf%m_l T + Zk.zr‘) Zfzo ulvk Zbi,k—i(éllv ) élka Cla (XS} Ck—i)a( )

whose quadratic terms equal to those of (5.46), that is, b;o_i(z,y) =
aio—i(z,y), 1 =0,1,2. Then if system (5.102) possesses a symmetry of
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the same order, then equations (5.102) and (5.46) are equal and share
the same symmetry.

This can be viewed as another version of Theorem 4 for the systems
case: the existence of infinitely many approximate symmetries of low
degree together with one symmetry implies integrability.

Now we formulate the classification theorem:

Theorem 18 If a homogeneous system (5.46) with a positive weight
wy, > 0 of odd order (p = 2n+1) possesses a hierarchy of infinitely many
higher symmetries, then it is one of the systems in the following list up
to re-scaling u — au,v — [u,t — ~t,x — dx, where o, 3,7,6 € C:

Ut = Vi,
vy = U + Juvy + vuy — 3u2u1,

Ut = V1,
v = (Dy +u)*(u) — 0%, n=1,23,....
Thege systems can be rewritten in the form of non-evolutionary equa-

tions if we introduce a new variable u = wy:

2
Wit = Wegr + 3wzwt,z + Wrz Wt — 3wzwzz
2 2
wit = (O + wz)™" (wz) — w;

The first equation is known to be integrable [53]. The second equa-
tion can be brought into linear form f;; = 92"*1f by the Cole-Hopf
transformation w = log(f). Its symmetries are given by

Ur, = Dy(Dp +u)™ tu, m=2,3,...
and
Uy,, = Dg(v + D¢)(Dyg + u)™ u.

These symmetries correspond to the symmetries fr,, = f, and f, =
ft,m of the equation fy; = foni1.

5.6 Symmetry structure of (2 + 1)—dimensional integrable
equations

This section is devoted to the study of (2 + 1)-dimensional integrable
equations. A famous example is the Kadomtsev-Petviashvili (KP) equa-
tion

Ut = Uggpe + OUUL + 3D;1uyy.
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One of the main obstacles to extending the spectacular classification re-
sults of (1+1)-dimensional integrable equations to the (2+1)-dimensional
case is that the equations themselves, their higher symmetries and con-
servation laws are non-local, i.e. they contain integral operators D;! or
D;l. In 1998, Mikhailov and Yamilov, [45], introduced the concept of
quasi-local functions based on the observation that the operators D!
and D! never appear alone but always in pairs like D; ' Dy and D' D,
for all known integrable equations and their hierarchies of symmetries
and conservation laws, which enabled them to extend the symmetry
approach of testing integrability [12] to the (2 + 1)-dimensional case.

The results in this section are based on a recent paper [35]. We develop
the symbolic representation method to derive the hierarchies of (2 + 1)-
dimensional integrable equations from the scalar Lax operators and to
study their properties globally. We prove that these hierarchies are
indeed quasi-local as conjectured by Mikhailov and Yamilov in 1998,
[45].

5.6.1 Quasi-local polynomials and Symbolic representation

The basic definitions and notations of the ring of (commutative) differ-
ential polynomials are similar to those in section 5.2.1. The derivatives
of the dependent variable u with respect to its independent variables
z and y are denoted by u;; = a;ag,'u. For small values of i and j, we
sometimes write the indices out explicitly, that is uzy and u instead of
Uu21 and UpQ-

A differential monomial takes the form wu;, j ui,j, - ui,;,. We call
n the degree of the monomial. Let R™ denote the set of differential
polynomials of degree n. The ring of differential polynomials is denoted
by R = ®p>1R". It is a differential ring with total z-derivation and
y-derivation

0 1s]
Dm = Z u,-+1,j% and Dy = E Ui,j+1ﬁ.
4,70 * 4,50 I
Let us denote

©=D;'D,, ©7'=D;'D,.

The concept of quasi-local (commutative) polynomials Rg was
introduced in [45]. Its definition is similar to the ring extension of Ry
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as in section 5.4.1. We consider a sequence of extensions of R as follows:

Re() = R, Ren+1 R@n U@ R@n Ue R@n
where the sets
O(Rer) ={O(f); f € Ren}, O Reon)={O7'(f);f € Ron}

and the horizontal line denotes the ring closure. Each Re» is a ring and
the index n indicates the nesting depth of the operators ©*!. Clearly,
we have

Reoo CRet CRe2C -+ CRen C-+- C Rox = Reo.

To define the symbolic representation of R, we replace u;, by 4&%’,
where £ and 7 are symbols (comparable to the definitions in section
5.2.3).

Definition 10 The symbolic representation of a differential monomial
is defined as

a” i ;
2:111_. Jn
Wiy, 51 Wiz, jo Ui,y \jin n! fg(l)na(l) gcr(n)nt:r(n)
’ oES,

The result of the action of operators ©*! on a monomial

ﬁka(fl,...,fk,nl,...,nk)

in the symbolic representation is given by

771+"'+77k>i1
G+ &)

By induction, we can define the symbolic representation of any element
in Re, which is a rational function with its denominator being the prod-
ucts of the linear factors. The expression of the denominator uniquely
determines how the operator ©%! is nested. For example, the symbol of
uy (Ou)O~lu € Rer is

Aka(glw-'vgkvnl?""nk)(

n2 &3 mé&s n2 &1
(6152773 g §11m3 s & m

The symbolic representations of pseudo-differential operators in the
(2 + 1)-dimensional case are similar to the case of one spatial variable
in section [35]. However, we assign a special symbol X to the operator
D, in analogy to the symbol Y for the operator D,.
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The extension of the symbolic representation from one dependent vari-
able to several dependent variables is straightforward. We need to as-
sign new symbols for each of them such as assigning ¢, 7)) for u and
€2 1@ for v and so on.

5.6.2 Lax formulation of (2 + 1)—dimensional integrable
equations

We give a short description of the construction of (2 + 1)-dimensional
integrable equations fromn a given scalar Lax operator based on the well-
known Sato approach. For details on the Sato approach for the (1 + 1)-
dimensional case, see the recent books [62, 63] and related references in
them.

Let H be an m-th order pseudo-differential operator in two spatial
variables of the form

H=-Dy+a,DI+am_ 1D '+ - +a+a D'+, m>0,

where the coefficients ay are functions of z, y. Let the commutator be
the bracket on the set of pseudo-differential operators. Thus, the set of
pseudo-differential operators forms a Lie algebra. For an integer k < m,
we split into

Hsp =a, D] + am_lD;”_l 4+ 4 akDf
Hey=H—Hsy=—-Dy+a_ D1 4 ...

This operator algebra decomposes as a direct sum of two subalgebras in
both commutative and noncommutative cases when k € {0,1}. Similarly
to the (14 1)-dimensional case, such decompositions are naturally related
with integrability and lead to admissible scalar Lax operators for the case
of (2 4+ 1) dimensions:

a. k=0: n>2,
L=D"+u=2Dr=2 4 4n=3pr=3 4 ... 1 4 —p,;
b. k=1: n>2,
L=Dt+u=0pn-tyy=2pn=24.. 4404 D-ly(-—_p,;
c. k=1: L=u94D7'wWY D,
where u(?) are functions of two spatial variables z, y. We often use

u,v,w, -+ in the examples. For the KP equation, the Lax operator is
the case a when n = 2, namely, L = Dg +u—D,.
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Let S= D, +ao+a-1D;! +---. For any operator L listed in cases
a, b and c, the relation

[S, L] :=SL— LS =0, (5.103)

uniquely determines the operator S by taking the integration constants
to be zeros. Furthermore, we have [S™, L] =0 for any n € N. For each
choice of 7, we introduce a different time variable ¢; and define the Lax
equation by
oL
ot;

where k is determined by the operator L as listed in cases a, b and c.

= [S">k, L], (5.104)

Theorem 19 For the operator S uniquely determined by (5.103), the
flows defined by Lax equations (5.104) commute, i.e., 0y,0;, L = 0,0, L

5.6.3 Laz formulation in symbolic representation

We put the formalism of section 5.6.2 into the symbolic form. The strat-
egy is to do the calculation as much as possible without symmetrisation
and only perform the symmetrisation at the last stage to get the unique-
ness of the symbolic representation since the symmetrisation complicates
the calculation dramatically.

Let us assign the symbols £ 1) for dependent variable u(?). The
symbolic representations of the admissible scalar Lax operators are

a k=0: n>2
szn_Y+,&(n—2)xn—2+,&(n—3)Xn——3+.“+,&(0) :

b. k=1: n>2,
L=Xn—y+a-Dxn-14.. +u(0)+u< 1

c. k=1: L=-Y+a© 44-D__1 _

X 5( 1) )
X 5( e
Here we only treat the case a. The study of the cases b and ¢ can be
found in [35].
It is convenient to consider formal series in the form

S =X+ 2a®eP (e " x) (5.105)
+ 211_0 n— 2 u(“)u(zz)a(nzz (f(“ ,77571'1 76(22 ’ (i2) X) + ,

j2
where n > 2 and a; are functions of their specific arguments, the su-
perindex is € {0,1,2,--- ,n — 2} and the subindex ji is defined by the
number of i in the list of [i1,42, - ,4;]. This implies that j; = 1 and
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Jk > 1, k=1,2,.---. For example, when i; = i5, the arguments of the

function aj "' are 5?1), ) el i) and X

It is easy to check that

(X7 =Y, g€l i) 5(“ i, X)) =
= NE, € 0 g,

J1 0 Jl e ! Jz ’
where the polynomial N; is defined by

l l
Nl(ﬁlﬂ?l,&ﬂ?%uwfl,nUX) = (Z£1+X)n _Xn _an .
i=1 =

Proposition 8 For any operator L in case a, if the formal series (5.105)
satisfies the relation [S, L] =0 (cf. (5.103)), we have for 1> 1,

A = gl g, X)
T (04 5 €€ 0,0, ),
The function b, | > 1, is defined by

l(f(”) (1) yE(”) (H)X)

(41) (11 . (41) (11) X) = TR TR Ny,
(£J1 ) Jl ’ g]l ’ Jt ? ) (5211)’17;111)’ ’5(11), ;:l)x)
with
€ )
= bi- 1(551‘),775?‘) g ) X 4+ gf)
- b—l(g(:2 ,77522)» : é(”)? ;:l)aX) 1>1

and the initial function ¢, (€%, 7", X) = 0¥,

To construct the hierarchy of the Lax equations we need to expand
the coeflicients of the operator (5.105) at X — oo and truncate at the
required degree. When n > 2, the expansion of
Ni(&1,m,€2,m2, -, &,mi; X) ™1 at X — oo is of the form

Nl(617n17§27n27"'7€lanl;X)_1
1 ) PN
nX"“(Z &) &920 \nX""2 (I &)
J
_ 1 Ck Xk+l n(zizo Ei)n—k—l} , n> 2.

Therefore, if we want to prove that the coefficients of operators (5.105),
i.e. the functions a;, are quasi-local defined similarly as in definition 7,
we need to show that the functions ¢; can be split into the sum of the
image of D, and the image of D,. It is clear that a{” (¢® 1{ X) are

quasi-local since we have ¢; (£{*, nll), X)=¢". When I > 1, we have
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Proposition 9 The functions cl(fj(f‘),n;f‘), cee ](f’),n§f’),X) forl>1

vanish after substitution

J1 J2 Ji—1

In fact, this proposition does not lead to our intended conclusion that
b; and thus a; are quasi-local since the objects are rational, not polyno-
mial. For example, the expression ug(g% — g%) representing u@u — (Qu)u
satisfies the above proposition. However, we cannot write u®@u—(Qu)u =
D, f1 + Dy f2, where both f; and f; are in Re.

Notice that the formulae in Proposition 8 are without symmetrisation.
Combining these expressions, we can obtain the formulae of high degree
terms of the operator S when dependent variables are commuting. Every
term in such S is quasi-local. This implies that every term in S™ is quasi-
local. From Theorem 19 follows

Theorem 20 The hierarchies of commutative (2 4+ 1)-integrable equa-
tions with scalar Laz operators are quasi-local.

The above setting up is valid for the noncommutative case except
Theorem 20. However, the extension of the concept of quasi-locality to
the noncommutative case is rather complicated. D, and D, are the only
derivations for the commutative differential ring. The extension simply
enables us to apply D' and D, ' on the derivations. We know that
the commutators are also derivations for a noncommutative associative
algebra and we need to take them into consideration. There are some
further discussions on this topic in [35].

Summary and discussion

In this article we have reviewed some recent developments in the sym-
metry approach in the symbolic representation. In particular we have
discussed two different methods. One method is based on the study
of conditions for the existence of a formal recursion operator, another
one is based on the explicit analysis of approximate symmetries of low
degrees.

The formal recursion method is a very efficient tool for testing the
integrability of a given PDE. This method is based only on the fact of
existence of an infinite hierarchy of higher symmetries and is not sensi-
tive to possible lacunas in the hierarchy of symmetries. It is extendable
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to wide classes of equations, including certain types of non-local equa-
tions. The method is rather simple and convenient for classification of
integrable systems of a fixed order. We have illustrated its power in
applications to classification of integrable generalisations of Boussinesq,
Benjamin-Ono and Camassa-Holm type equations.

Explicit analysis of approximate symmetries relies on the structure
of dispersion relations (linear terms) of systems. We have seen that
the structure of symmetries of a given equation is parametrised by their
dispersion relations and the analysis of existence of approximate symme-
tries is based on divisibility properties of special polynomials determined
by the dispersion laws. Such divisibility properties are often obtained
via algebraic geometry and number theoretic methods. It gives detailed
information on the structure of the hierarchy of higher symmetries. So
far it is the only method which has proved to be suitable for a global
classification. Here we mean a classification of integrable equations of
all orders. In the frame of this method it has been demonstrated that
any integrable homogeneous evolutionary equation

Ut = tp + f(Un-1,...,u) n>2,

where w(u) > 0, is a symmetry (a member of a hierarchy) of one of the
equations of order 2,3 or 5 presented in Theorem 9.

A system of equations is a considerably more complicated object. Here
the only “global” result available is a classification of integrable homo-
geneous Boussinesq type equations of odd order (Section 5.5.2). In the
theory of integrable systems the description of admissible structures of
linear terms (the dispersion laws) for equations and their symmetries is
an important and as yet unsolved problem. It is the so-called spectrum
or dispersion problem. Let us consider a system of PDEs

u; = Au, + F(u,—1,...,u), u:(ul,...,uN)T, n>2 (5.106)

where A is a constant N x N matrix. Its higher symmetry, if it exists,
is of the form

u,, = B(m)u, + G(uy,_1,...,u), m > 2

where B(m) is a constant matrix commuting with A. Let us denote by
A1,..., AN the eigenvalues of the matrix A and assume that A\; # 0,
then the set Sa = {A2/A1,...,An/A1} is called the spectrum of system
(5.106). Similarly define Sp(my = {p2(m)/ui1(m),..., un(m)/p(m)},
the spectrum of symmetry, where pi(m),...,un(m) are eigenvalues of
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the matrix B(m). The spectrum is invariant with respect to any re-
scaling. In many respects it reflects properties of symmetries, conser-
vation laws and solutions of the system. For example, the existence of
higher conservation laws for a system of two even order equations implies
that Sa4 = {—1} (see [20]).

The integrable system [57]

u = (5— 3\/5)U3 —2uuy + (3 — VB)vug + 2uv; + (14 V5w,
v = (5+3v5)vz + (1 — \/5)uu1 + 2vuy + (34 \/g)uvl — 2uvy,

has spectrum S = {A2/A1} = {—3(7 + 3V/5)}. It possesses an infinite
dimensional algebra of symmetries of orders m = 1,3,7,9 mod 10. The
ratio of parameters pa(m)/p1(m) is given by

pa(m) _ (1+exp ()"

w1 (m) 1+ exp (2";"") '

The symmetry approach in symbolic representation can be applied
to the study of possible spectra and classification of integrable systems.
For systems of two homogeneous differential polynomial equations of
second order the problem has been solved in [23]. Recently we have
been working on this problem for systems of two equations of odd order.
The results obtained will be published elsewhere. Here we present two
rather non-trivial examples of integrable systems, which we believe are

new.
The following system

ur = (9 —5v3)us + Do {2(9 — 5v3)uuz + (—12 + 7V3)ui}
+2(3 — vV3)uzv + 2(6 — v/3)uzv1 + 2(3 — 2v/3)u1vs
—6(1 4+ V3)uvs + Dz {2(33 + 19v/3)vvz + (21 + 12v/3)07 }
+23(—12 4+ 7V3)u u1 + £(3 — 2v/3) (vuur + uPv1)
+2(24 + 13v3)v%ur + £(36 + 20v/3)uvvr — £(45 + 26v/3)vuy,

ve = (9 +5v3)vs + Ds {2(33 — 19v3)uus + (21 — 12v/3)uf}
—6(1 — V3)uav + 2(3 4+ 2v/3)u2v1 + 2(6 + V3)u1v2
+2(3 + V3)uvs + Dq {2(9 + 5v3)vvz — (12 + 7V/3)0?}
—58(45 — 26v/3)u’us + £(36 — 20v/3)vuuy + £(24 — 13v/3)u’v;
+z(3+ 2v/3) (v*u1 + uvv,) — %(12 + 7v3)v*u;

possesses an infinite dimensional algebra of higher symmetries with

pa(m) (1 +exp(7)

, m=1,57,11 mod 12.
p(m) 1+ exp(TF)
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The system

u = —gus — 10vv3 — 15v1v2 + 10uus + 25uiug — 6v%0;
+6v2uy + 12uvv; — 12uu,,
vy = 15vs + 30v1v2 — 30v3u — 45v9u; — 35v1us — 10vug

—6v%0; + 6v2uq + 12uv; + 12vuu;.
possesses symmetries of orders m = 1,5 mod 6 with

pa(m) _ (1+exp(E)"
p(m) Tt exp(TE)

There is a reduction v = 0 to the Kaup-Kupershmidt equation.
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Abstract

Integrable dynamical systems are both rare and ubiquitous. It is there-
fore a worthy pursuit to find new integrable systems. In this contribution
we give two examples of such search projects and discuss the computa-
tional algebraic problems this leads to.

6.1 Definitions of integrability

We will be discussing here the problem of searching for integrable sys-
tems. But at the very beginning it should be made clear that there is
no unique definition of “integrability”. In broad terms we can say that
an equation is integrable if its solutions behave nicely (cf. Painlevé prop-
erty). However, this is not an operational definition, because we do not
normally know all the solutions. Thus we have to look for certain prop-
erties of the equation, namely such properties that in some way imply
“niceness” of its solutions.}

One important observation that has been made about integrable sys-
tems is that there is always some interesting underlying mathematics.
In a way this implies that among all equations the integrable ones are
of measure zero, somewhat like prime numbers are among all numbers.

Since integrable dynamical system are rare it is of interest to search
for and classify them. This is one of the important themes of research
into integrable systems.

Different classes of dynamical systems have different properties that
1 Note, however, that the existence of a closed form explicit solution is not equivalent

to integrability: For example the logistic map yn4+1 = 4yn (1 — yn) has the explicit

closed form solution yn, = % [1 — cos(2™c)], which shows sensitive dependence on
the initial value ¢ and is therefore chaotic.
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can be associated with integrability. In principle any property that guar-

antees regular behavior is of interest. The property can be directly as-

sociated with the equation:

e for sets of ordinary differential equations: sufficient number of con-
served quantities

e for evolution equations: linearization through a Lax pair

e for almost all systems: symmetries

e 2D-lattice partial difference equations: consistent extension to 3D.

or with some calculable property of its solutions:

e for almost all systems: the absence of nasty singularities (Painlevé

property)

e for ordinary difference equations: low growth of complexity (Nevan-
linna theory)

e for soliton systems: the existence of multi-soliton solutions

Any of the above properties can be taken as the key property and a
search can be organized around that chosen property. One just needs
to choose a suitable class of dynamical systems on which the property
can be applied. Indeed, for each property there are natural assumptions
which restrict the class of equations under study. In practice applying
“the method” on “the class” produces a large over-determined set of
equations, which must then be solved. Usually this set of equations
can at best be solved by computer algebra systems, but it should be
stated that even fairly simple over-determined sets of equations are still
unsolvable by modern computer methods.

In the following we will take a more detailed look at two aspects of
integrability and the algebraic problems that are met in searching for
integrable systems within those definitions.

6.2 Liouville integrability
6.2.1 Definitions

Liouville integrability is the suitable definition of integrability for Hamil-
tonian systems with a finite number of degrees of freedom. The dynami-
cal variables consist of N coordinates ¢;(t) and N momenta p;(t), which
are assumed to be C*°-functions of time ¢, and the dynamics (time evo-
lution) is given by a Hamiltonian H = H(p, q) as follows:

N

¢ = {H,q:}, ._ 59A OB _ 9A OB
Un iy, e (43) =2 (G -
=

{e, @} is called the Poisson bracket.
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Definition 1 A Hamiltonian H(p,q) is said to be integrable if there
are N functions Ix(p,q) (H one of them) such that the I,

(i) are functionally independent,

(ii) are in involution, i.e., {I,, I} =0, Yn,m,

(iii) are sufficiently regular.
The usefulness of this definition follows from the Liouville-Arnold the-
orem, which states that a Liouville integrable system can indeed be
integrated by quadratures [1].

Since {H, I} = 0 the I are called “constants of motion” or “con-
served quantities”. If there are M of them, then the different levels of
integrability are:

e partially integrable if M < N|

e integrable, if M = N,

e superintegrable, if M > N (in which case the ) all commute with H,
but they cannot all mutually commute).

Many examples of Liouville integrable systems are known, but an
exhaustive classification exists only when N = 2,3 and the p-degree of
Iy is 2.

6.2.2 Searching for Liouwville integrable systems

For simplicity let us take N = 2 and a Hamiltonian in the “standard
form”:

=3Pz +1y) + V(z,y). (6.1)

Here the potential V' is unknown, i.e., we would like to know for which
V the system is integrable. Since N = 2 we need, by definition, just
one sufficiently regular function I(ps,py,z,y) (the “second invariant”),
which is functionally independent of H, but Poisson-commutes with it.

To simplify the search problem, and to guarantee regularity of I, we
take I to be a polynomial in p. A search can then be organized by
the degree of p in I. Since H is invariant under p; — —p; we must
have I(—pg, —py, T, y) = £I(ps, Py, x,y), which simplifies the problem
somewhat.

In practice one first generates a candidate I of degree K:

[K/2] K—2k

=Y 3 @y k-oknpipl "

k=0 n=0

Next one calculates {H, I} = 0, collects coefficients of monomials p’p?,
and solves the resulting differential equations.
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Example: Take degree K = 1 in which case the ansatz will be I = ¢11pz +
c10py- Equations from {H,I} =0 are

p2: Ozc11 =0.

PyPz © Ozc10 + Oyern = 0.
pz ¢ Oyci0 =0.
1: Cloayv +c110:V =0.
These are easy to solve: we get
c1=ay+B, co=-ax+v, V=uv(ia@®+y’)+By-z)

Next, in order to classify the result we need to identify the canonical forms:

(1) If a # 0 we can translate 8 and « out to get V = v(/z? + y?).
(ii) If a = 0, we can rotate the potential into V = v(z), or V = v(z % iy).

For any degree K the leading (in p) terms of I are easy to solve,
the coefficients are polynomials in z,y. The other equations are more
difficult. For an ansatz of even degree K there will be ,];/(2)_1(2/6 +
1) = (K/2)? further unknown functions in I, one in H, namely V, and

kKﬁ 2k = (K/2)((K/2) + 1) equations. This is an overdetermined set
of differential equations if K > 2.

For K = 2 the complete solution is known: Equations of motion
are separable in known orthogonal coordinate systems [2]. (Later some
additional complex potentials were found [3].) Higher values of K cor-
respond to non-separable cases. The complete solution is not known for
any K > 2, although many isolated examples are known. For further
details see the review [3].

6.2.3 Superintegrability

Superintegrability means that in addition to integrability (N mutually
commuting quantities) there are still more quantities that commute with
the Hamiltonian. The maximal number of such additional independent
quantities commuting with the Hamiltonian is N — 1.

For example with the above Hamiltonian (6.1) (N = 2), for integra-
bility we would need a second invariant I, and for superintegrability
two constants of motion I3, I3, both commuting with H, but necessarily
{I2,I3} # 0. Of course the I; should be functionally independent and
regular enough (for example polynomials in p).

Several superintegrable examples are known, usually I is also quadratic
implying separability, the other may be higher.

Example: V = z?+4y%+d/z? and V = 2249y have second order I> (because
they are separable) and also a third order I3.
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6.2.4 Quantum integrability

The classical definition of Liouville integrability carries easily over to
quantum mechanics: Just replace p; — ¢ 70,,, so that the I) become
differential operators, and the Poisson bracket is replaced by the com-
mutator.

Definition 2 In quantum mechanics a system is said to be integrable
if there exists a set of N independent mutually commuting differential
operators, one of which is the Schrédinger operator.

For N = 2 the Schrédinger operator would be
H:=—5 (82 +8) + V(z,y),

and for quantum integrability we would need a second commuting quan-
tity, which now would be a differential operator.

The equations ensuing from a search problem based on this are quite
similar to the ones in the classical case, only slightly more complicated.
Many classical systems have quantum integrable counterparts, with pos-
sibly "2 corrections [4].

In quantum mechanics there is the interesting additional possibility
that it even makes sense to have more than N mutually commuting
differential operators, although only N of them can be algebraically
independent. In classical mechanics there is no use for algebraically
dependent constants of motion, but in quantum mechanics, where we
deal with differential operators, such relationships can be nontrivial.
This leads to the concept of algebraic integrability [5).

As an example consider the Hamiltonian (N = 3)

~2
H = —+ (m0} + p205 + ps03)
+A[mP(g2 — g3) + p2P (g3 — q1) + p3P(q — 2)],
where P is the Weierstrass elliptic function. The three known quantum
integrable cases of this type are characterized as follows:

(i) The classical case: pu; = pg = us, A free.
(ii) Elliptic case : u1 = pa, A = —"2(u1 + p3)/m [5).
(iii) Hyperbolic case: p1 +pua +ps =0, A= "2 [8].

Note that in Cases 2 and 3 the strength of the potential is proportional
to “2. This means they are purely quantum mechanical integrable po-
tentials without classical counterparts. The four commuting quantities
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I, forn =1,2,3,4, can be given as
Iy = plof + py =108 4+ ug =105 + terms of degree n — 2 and lower.

The analysis of acceptable algebraic dependency is rather involved; in
Case 1 above the dependency is trivial, but in the other two it brings in
new information.

6.2.5 The computational problem

In this section the general problem is: How to solve an overdetermined
set of differential equations? There are computer algebra programs de-
signed just for this, for example CRACK [9].

The problem of solving sets of differential equations can be made into
an algebraic problem by computing all differential consequences up to
some fixed degree in the jet space. After a certain degree further dif-
ferential consequences produce nothing new, in fact “completion algo-
rithms” have been implemented on computer algebra systems, see e.g.
[10]. The resulting set of equations can then be considered as a set
of algebraic equations, by taking all partial derivatives of the unknown
functions as independent variables. Since the system is highly overde-
termined, and the number of integrable systems limited, the system of
equations should be solvable. One can later on return to the original
interpretation of partial derivatives and solve the final set of differential
equations. For K = 3 the extension is not difficult to compute but it
leads to complicated algebraic equations, and still has not been solved
in full generality.

What is needed? A method to handle huge sets of overdetermined
algebraic equations. If one tries to solve the full set by calculating its
Grobner basis the computers still tend to freeze due to the notorious
intermediate expression swell. Since we are just trying to solve a set of
polynomial equations, we just need the “factorized Grobner basis” in
which each factorization of an equation creates branches in the solution
tree. This simplifies the size problem but does not solve it. One possible
method of overcoming it is “incremental Grébner basis computation”.
By this I mean the following algorithm:

Compute first a factorized Grobner basis G for a small set of equations.

(i) choose the next equation F
(ii) for each g € G compute the factorized Grobner base g of the set

{E,9}
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(iii) combine the lists {gr|g € G} and eliminate sub-cases to create

new-
(iv) if there are equations left, and no contradictions have been found,

goto 1, else finish.

This would be efficient if the system is highly overdetermined and one
can feed the new equations in some intelligent way.

6.3 Search for integrable soliton equations

Another search program that we will discuss here is the search for in-
tegrable PDE’s. Again there are different signatures of integrability on
which a search can be based. Let us compare two of them:

Symmetry [11]:

(i) dimension of space-time: 141

(ii) the ansatz is made for the leading part of the equation, which im-
plies the dispersion relation (for example u; = uzzz+ f (U, Uz, Uzy)
implies curve w = p?).

(iii) nonlinearity is arbitrary, to be found

(iv) the condition is on the existence of a sufficient number of sym-
metries of the equation

Three-soliton condition [12]:

(i) dimension of space-time arbitrary
(ii) dispersion relation is arbitrary, to be found
(iii) equations are assumed to be in the Hirota bilinear form, nonlin-
earity determined by dispersion relation
(iv) the condition is on the existence of multi-soliton solutions.

We see that the approaches are quite different, both in the integrability
indicator and the suitable class of equations.

6.3.1 Hirota’s bilinear method

At this point we would like to note that the variables in which an equa-
tion is given might not be the best for further analysis. Indeed, a fun-
damental ingredient in Hirota’s approach is a dependent variable trans-
formation. R. Hirota noted in 1971 [13] that since from ISTM we know
that the soliton solutions of the Korteweg—de Vries (KdV) equation

U + 66Uy + Ugge = 0 (6.2)

have the form
u = 202 log(det M),
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where the entries of M are of type a + beP*t*?, it would be useful to
change variables from u to F' by

u = 202logF.

The new dependent variable F' should be a good variable to use, since
for soliton solutions it would be a polynomial in exponentials.

In practice it turns out that it is best to take the KdV equation into
its potential form

Wrax + 3W2 +we =0, (6.3)

where u = J;w. Now substituting
w = ady log F,
into (6.3) results with
F? x (something quadratic) + 3a(2 — a)(2FF" — F’*)F'? = 0.
Thus we get a quadratic equation if we choose o = 2:
FropoF — AF 0o Fy + 3F2, + FyF — F,F, =0,

This can be written as

(Dy + DoDy)F - F =0,

where we have used the

Definition 3 Hirota’s derivative operator D is defined by
Difg = (Ba —8u) flang(a)l,, . _.
= 0yf(z+y)g(z—y)|,_,
Note the crucial sign w.r.t Leibniz product rule.
Definition 4 We say that an equation is in the Hirota bilinear form,

if it is quadratic in the dependent variables and if all derivatives in the
equation are given through Hirota’s derivative operator.

An important property of Hirota bilinear equations is their invariance
under the gauge transformation

F —e"F,G—e"G: P(D)(e"F-¢"G)=e**P(D)F-G, ifk=2c-1
(6.4)



Searching for integrable (P)DEs 225

This is the guiding principle in generalizing Hirota bilinear forms into
trilinear forms, or into the discrete domain. Note also that

P(D)e%% . bE = P(a@— g)e(a+5)'i.

Bilinearization of the equation is a necessary first step in Hirota’s anal-
ysis, but unfortunately this step is not algorithmic. In fact, the number
of dependent or even independent variables cannot be fixed beforehand.
Despite this almost all integrable equations have been written in bilin-
ear form. In integrable cases the dependent variables are 7-functions,
according to the Sato theory.

It should be noted that the existence of a bilinear form does not imply
integrability. Once the bilinear form has been constructed one can try
to find its multi-soliton solutions using a perturbative approach, but this
will yield general N-soliton solutions only in integrable cases.

6.3.2 Soliton solutions

Let us consider the class of equations

—

P(D)F-F =0, (6.5)

where P may be assumed even.

The background or trivial solution © = 0 corresponds to F' = 1, which
means that we must take P(0) = 0.

The one-soliton solution (1SS) is built on top of the background F =1
perturbatively; the ansatz is:

F=1+¢", wheren=2 5+1°.
It is easy to verify that this is a solution, provided that
P(p:) =0, (6.6)

which is the dispersion relation. This is the curve on which the solution
lives. In the KdV case this solution corresponds to a soliton:

u = 203 (log(F))
2p%e"  p?/2

(1+e€7)?  cosh(in)?

Note that the dimension of the coordinate space is not limited.
The Ansatz for the two-soliton solution is a natural extension of the

above:

F=1+e™m+e™+4 Ape™™™  n, =35 + 12, (6.7)
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The essential feature here is that the two-soliton solution is built from the
1SSs perturbatively, i.e., if we want a K-soliton solution the expansion
should start as

K
F:1+Ze"k+...
k=1

where each 7 is as in a 1SS.
After substituting (6.7) into (6.5) and collecting terms with different

products of e one finds that all other terms cancel except ™" and

from its coefficient one finds

P(p1 — p2)

P(p1 + pa)’

Ezample, KdV: n = px 4+ wt + 19, and DR w = —p>:

Ajp = — (6.8)

(p1 = p2)* + (pr — p2) (w1 —w2) _ (p1 —p2)°

Al = — = .
2 (P14 p2)* + (p1 +p2) (w1 +w2) (P14 p2)?

Thus the result is that any equation of type (6.5) has two-soliton
solutions. This is a level of partial integrability: we can have elastic
scattering of two solitons, for any dispersion relation, if the nonlinearity
is suitable. However, the existence of three-soliton solutions is not auto-
matic, on the contrary: it imposes severe restrictions on the polynomial
P, and can be used as a search criterion.

6.3.3 The three-soliton condition

Definition 5 If a Hirota bilinear equation has a 1SS given by
F=1+c,m = +n0, P(5}) = 0,

and one can construct to that equation an N-soliton solution of the form

N
F=1+ eZe”f + (finite number of h.o. terms)
j=1
without any further conditions on the parameters p, of the individual
solitons, then the equation is said to be Hirota integrable. (Here € is
a formal expansion parameter.)

In practice it seems that Hirota integrability is equivalent to other
forms of integrability. In the above equation the condition “without any
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further conditions on the parameters” is essential, because all equations
have multi-soliton solutions for some restricted set of parameters.
Let us now apply this principle to the three-soliton solution:

F =1 + e’ll + e'? + e
+ A12€m+n2 + A236"2+n3 + A316U3+771

+ Ajgge FH (6.9)

It seems that we have here onc new parameter A;53. However we have
the separability condition: If any one soliton goes far away, the rest
should look like a (N — 1)-soliton solution. Here “going away” means
that either e”* — 0 or e”™ — oo. When this is applied to (6.9) one finds

Aoz = A1p A3 A3,

Thus there is no freedom left: the parameters are restricted only by the
dispersion relation (6.6); phase factors A;; have been given already in
(6.8). Therefore it turns out that the existence of a 3SS is a condition
on the equation!

We can use the gauge transformation (6.4) to write the soliton solu-
tions in a symmetric way. We get

Fiss —e~ 2" 4 3, (6.10)

. ez (=m—mn2) ez (=m+n2) e (Mm—n2) e3 (M +n2)
288 = = —+ = — + = — + = —,
VP@L+P2) -P@ —p2) -P®1—p2) P+ p2)

(6.11)

e3(o1m+o2n2+osns)

Fyss =) . (6.12)

=\ VP(0171 + 02p2) P(0191 + 03p3) P02 + 0373)

Substituting (6.12) in (6.5) yields the “three-soliton-condition”, which
can be written as
> P(or + o2 + 03ps) P(0151 — 02p)
o,=%
x P(o2p> — 03p3) P(01p1 — a3p3) = 0.

or
) P(o1py + 022 + 03P3)
= Plo1py + 02p2) Poapa + 03ps) P(o1p1 + 03p3)

=0.  (6.13)

The search problem in the equation class (6.5) is then as follows [14]:
Find all polynomials P, such that (6.13) holds on the affine



228 Jarmo Hietarinta

variety {(p1,p2,p3)|P(P;) = 0}. Naturally we are only interested in
nontrivial results, which means that acceptable polynomials P should
have a nonlinear irreducible factor.

Such a search program was carried out in [15]-[18], see also [19 ]. For
the class (6.5) the complete result is as follows:

(D; —4DyDy+3D2)F-F = 0,  (6.14)

(D3Dy+aD2+ D,D,)F-F = 0, (6.15)

(D% — DD} + aD? + bD, Dt+cD2)F F = 0, (6.16)
(DS +5D3D, — 5D} + D, D,)F = 0. (617

and their reductions. These equations also have 4SS and pass the
Painlevé test. Of the above equations (6.16) was new, it is non-evolutionary
and its Lax pair is still unknown.

6.3.4 Other types of equations

There are also other types of bilinear forms, sometimes pairs of bilinear
equations etc. For them one can derive similar three-soliton conditions.
Sometimes the existence of two-soliton solutions is not automatic.

Of the other types of equations we would like to mention here only
the nonlinear Schrodinger equation given by

iUy + Ugg + 2€|ul?u =0, (6.18)

where the function u is complex.
The substitution that bilinearizes (6.18) is

u=g/f, ¢ complex, f real,
yielding
FlaDe+ DY)g- f] = g[D7f - f = e2lgl’] =
For normal (bright) solitons we split this into

(iD,+D%)g-f = 0,
{ Dif-f = eg* (6.19)

For the search point of view we define the “nlS-class” by

B(D)G-F = o,
{A(D)F~F — QIR (6:20)
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and start constructing multi-soliton solutions. As the vacuum soliton
we take f = 1,¢ = 0. Next, using the formal expansion

f=1+efi+e2fot+..., g=egi+...
we get an ansatz for the 1SS
g=ce", f=1+¢e%ae"™ | = pr+ wt complex. (6.21)
which works if we take
dispersion relation B(p) = B(—p*) =0,
1

AP +p*)

A search can be based on the existence of two and three-soliton so-
lutions. This is because of the complex nature of the solution; in some

way 7 and n* should be counted separately.
The results of such a search are [18, 19 |:

phase factor a =

(D2 +iDy+¢)G-F = 0,
(a(D% — D2)+D D)F-F = |G]?
(iaD2 + 3¢D? +i(bD, — 2dD;) +g)G-F = 0,
(@D3Dy+aD2 + (b+3c?)D,. Dy +dD})) F - F = |G)?,
(iaD? + 3D,D, — 2D, + ¢)G-F = 0,
(a(a?D - 3D2 4 4aD,D;) + bD2)F-F = |G2.

The last equation combines the two most important (2 + 1)-dimensional
equations, Davey-Stewartson and Kadomtsev-Petviashvili equations, and
deserves further study.

6.4 Conclusions

We have here discussed the problem of searching for integrable systems.
Integrability is associated with several properties and any one of them
can in principle be used for a search project. However, the property
that is natural and easily accessible varies from one class of equations
to another.
Here we have discussed two search problems:
(i) Two-dimensional point-particle dynamics given by a standard
type Hamiltonian (6.1), for which integrability is defined by the
existence of a second invariant.

(ii) Soliton equations in Hirota bilinear form (6.5), for which integra-
bility is associated with the existence of three-soliton solutions.
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In each case the final problem is that of solving an overdetermined set

of equations, for which new and more powerful methods are still needed.

Finally it should be noted that if we start with assumptions of high

mathematical level the computations may be easier, but at the same
time we may be unnecessarily restricting the set of results. In the ex-
amples discussed here the assumptions have been mathematically rather
undemanding.
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7.1 Introduction

I will give a short account of some of my talks at the very interesting
mini-programme on the algebraic theory of differential equations. I have
recently written several expository and research papers on the relevant
topics, so I refer the reader to these papers for more details and restrict
myself here to just conveying a few key points. In the first week I
gave three talks, originally intended to consist of (I) model theory and
differential algebra, (II) nonlinear differential Galois theory, and (III)
differential algebra and diophantine geometry. As it turned out I only
really covered (I) and (IT) and I will discuss these below. References
are [9] which gives an introduction to model theory and applications to
differential algebra, and [8] which gives among other things an accessible
account of a differential Galois theory going beyond both the Picard-
Vessiot (linear) theory and Kolchin’s strongly normal theory. Both these
papers are written with an eye to the non logician. I also recommend
the appendix to Hrushovski’s paper [4] for another discussion of model
theory and Galois theory.

In the second week of the programme I gave a talk on nonlinear gener-
alizations of Grothendieck’s conjecture on the arithmetic of differential
equations. This Grothendieck conjecture (G), in a simple form, says that
if dy/dt = Ay is a linear differential equation (in vector/matrix form)
over Q(t), then the equation has a fundamental system of solutions in
the algebraic closure Q(t)*9 of Q(t) if and only if for almost all primes
p the reduction mod p of the equation has a fundamental system of so-
lutions in Fp,(¢)°°P, the separable algebraic closure of Fy(t). Ekedahl,
Shepherd-Barron and Taylor formulated a conjecture (F) relating the
integrability of algebraic foliations on algebraic varieties defined over Q
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to the p-curvature of the reduction modulo p of the foliation for almost
all p, and showed that (F) implies (G). I proved essentially that (G)
is equivalent modulo (F) to a certain statement (D) whose conclusion
belongs in a sense to differential algebraic geometry or the model theory
of differential fields, and concerns the existence of definable functions
(with arbitrary parameters) from suitable definable sets to the field of
constants in differentially closed fields. The proof uses Kolchin’s differ-
ential Galois theory (discussed and generalized in the rest of this paper)
as well as results of J.-B. Bost. As my results are written up in detail
in [10] (in a volume coming out of a 2005 program at the Isaac Newton
Institute) I will refer interested readers to that paper rather than just
repeat the content here.

7.2 Model theory and differential fields

Model theory and stability theory are quite abstract subjects, but many
of their constructions and theorems are meaningful in more concrete
contexts, although additional work may be required to find the ap-
propriate translation. The theory of internality and definable auto-
morphism groups originated with Zilber, was put in a general form by
Hrushovski, and is still undergoing refinements, in connection with “de-
finable groupoids”. Poizat [12] first pointed out that this theory gives
a model-theoretic explanation of the Picard Vessiot theory as well as
Kolchin’s more general strongly normal theory (both of which concern
extensions of differential fields), and even suggests a further general-
ization. Details of this further generalization, at the level again of ex-
tensions of differential fields, were worked out in [7], but using heavily
model-theoretic language. Another account concentrating on the differ-
ential equations giving rise to this generalized Galois theory, was given
in [8]. The relevant equations are “logarithmic differential equations on
algebraic D-groups”. In fact in [2] Daniel Bertrand suggested that this
general differential Galois theory may be relevant to proving Schanuel-
type conjectures for nonconstant commutative algebraic groups, and this
is confirmed to some extent in a current collaboration with Bertrand.

Key notions of model theory (and mathematical logic) include struc-
ture, formula, definable set, elementary extension and substructure,
(first order) theory, complete theory, type. A rather free-ranging in-
troduction for the general mathematician appears in [9], but there are
of course many books on the subject, such as [3] and [6], which we
recommend.
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The important first order theory for our purposes is DCFy, the the-
ory of differentially closed fields of characteristic zero, in the vocabulary
with symbols +, —,-,0,1,3. DCFy consists of the axioms for differential
fields of characteristic 0 together with axioms expressing, for a differen-
tial field F', that any finite system of differential polynomial equations
over F' with a solution in a differential field extension of F' already has
a solution in F. It is not completely trivial to express the latter in a
first order manner. A differentially closed field (of characteristic zero)
is precisely a model of DCFy, that is a differential field in which the
axioms are true. DCFj is complete with quantifier elimination. We
typically work in a “sufficiently saturated” differentially closed field U
(or (U,0) if we want to exhibit the derivation) namely a universal dif-
ferential field in the sense of Kolchin. There is no harm in assuming
that the field of constants C of U coincides with C. Of course U (or any
differentially closed field for that matter) is rather far from “natural” dif-
ferential fields, such as (C(t),d/dt), (Q(t),d/dt), their finite extensions,
and their Picard-Vessiot extensions. (However any countable differential
field embeds in the differential field of germs of meromorphic functions
at 0 € C.) Differentially closed fields provide the appropriate notion
of “geometric” for algebraic differential equations in the same way as
algebraically closed fields do for polynomial equations. Namely to see
all solutions of a system of differential polynomial equations one should
consider points in a differentially closed field. This general point of view
(like Kolchin’s) is of course analogous to that of Weil’s Foundations. Al-
though possibly out of sync with a more scheme-theoretic approach, it
is convenient for directly applying model-theoretic machinery.

The underlying objects of “differential algebraic geometry” are the
common solution sets, X C U™, of finite systems of differential polyno-
mial equations (with coefficients from U), in n (differential) indetermi-
nates. These are sometimes called Kolchin closed sets analogously to
Zariski closed sets. Identifying an algebraic variety with its collection
of U-points we can and will also talk about Kolchin closed subsets of
algebraic varieties. Up to finite Boolean combination the Kolchin closed
sets are precisely the definable sets in Y (by quantifier elimination). It
makes sense to talk about a Kolchin closed set (or definable set) being
defined over a differential subfield F' of #. For X defined over F, X (F')
denotes the set of points of X with coordinates from F'.

The theory DCF, has an important model-theoretic property called
w-stability. I won’t give the definition of w-stability but in the case of
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DCFy it amounts (using quantifier elimination) to the fact that for any
countable differentially closed field F, the differential spectrum (set of
prime differential ideals) of the differential polynomial ring F{z} over
F in one (differential) indeterminate is countable. One consequence of
w-stability is the existence and uniqueness of “prime models over sets”
which in the case of DC'Fy amounts to the existence and uniqueness (up
to isomorphism over F) of the differential closure F%ff of a differential
field F'.

7.3 Internality, differential galois theory , and logarithmic
derivatives

As mentioned at the beginning of the last section the general theory
of internality lies behind differential Galois theory. We fix an w-stable
theory T" and let & be a saturated model of T of large cardinality in
which we work. (So for T' = DCFy, U is a universal domain in the sense
of Kolchin.) Let X,Y be @-definable sets. We say that Y is internal to
X if there is a definable function f. (defined with parameters ¢) from
X x ... x X onto Y. A typical example is where X is a group G, and
there is a regular (-definable action of G on Y. In this case choose ¢ to
be any element of Y and let f.(g) = gc.

The basic model-theoretic result (see Chapter 7, section 4 of [11] or the
Appendix to [4] for general formulations and proofs) is:

Proposition 7.3.1 Suppose X, Y are O-definable sets such that Y is
internal to X. Then

(i) We can choose f. (witnessing internality) such that ¢ is a tuple of
elements of Y, in fact of elements from Y (My) where My is a prime
model of T. We call ¢ a “fundamental system of solutions”.

(i1) Let Gal(Y/X) be the group of permutations of Y induced by au-
tomorphisms of U which fix X pointwise. (Equivalently Gal(Y/X) 1is
the group of elementary permutations of Y over X.) Then there is a
(0-definable group G and a O-definable action of G on Y which is iso-
morphic (as an abstract group action) to the action of Gal(Y/X) onY.
(iii) The isomorphism in (ii) induces an isomorphism between G(My)
with its action on X (My), and Gal(Y (My)/ X (My)).

(iv) The definable group G from (ii) is also internal to X.

The general point is that when specialized to the theory T' = DCF,
and working over arbitrary differential fields, we obtain a rather com-
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prehensive Galois theory for differential fields. Of course there are some
delicate issues involved, first a move from “automorphism groups” of
definable sets, as in Proposition 3.1, to automorphism groups of differ-
ential field extensions, but also a certain technical assumption of the “no
new constants” kind. Anyway, we now take T to be DCFy and obtain
the following:

Proposition 7.3.2 Let F' be a (small) differential field. Let X, Y be F'-
definable sets (namely defined with parameters from F ). Assume that Y
is internal to X, witnessed by c-definable function f, with ¢ from F%ff
(by 3.1 (i)). Assume also

(%) X(F) = X(F415),

Let K = F(c) (the differential subfield of U generated by F' and c). Let
G be the F-definable group given by Proposition 3.1 (for X and Y).
THEN there is a natural isomorphism i between G(F%/1) and Auty(K/F
which establishes a Galois correspondence between F%/f-definable sub-
groups of G and differential fields lying between F and K.

Note that by Auts(K/F) we mean the group of automorphisms of the
differential field K which fix F' pointwise.

We call an extension F' < K of differential fields obtained as in Propo-
sition 3.2 a differential Galois extension.

Some remarks:

(I) There is a natural identification of Gal(Y (F%ff)/ X (F4/f)) with
Autg(K/F), which together with the isomorphism in 3.1(iii) gives the
isomorphism ¢ in 3.2.

(II) If X = C (the field of constants of &) then condition (*) in Proposi-
tion 3.2 is equivalent to Cr being algebraically closed, and so Cr = Ck
as K < F4Sf  The situation where X = C corresponds precisely to the
extension K > F in Proposition 3.2 being a strongly normal extension
in the sense of Kolchin [5].

(III) If X = C and Y is the solution space of a linear differential equation
over F, Oy = Ay (where y is a column vector of unknowns and A a square
matrix over F') then K from Proposition 3.2 is called a Picard- Vessiot
extension of F' for the equation. Note that Y is a vector space over C
and in fact the “fundamental system of solutions ¢” can be chosen to be
a C-basis (with coordinates in F#/f) of Y.

In cases (IT) and (III) the differential Galois group of K over F is usually
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thought of as the group of Cp-rational points of some algebraic group
over Cp. This follows from Proposition 3.1 (iv) (internality of G to X).
We will discuss further below various incarnations of the Galois group.

We now briefly discuss the differential equations lying behind the dif-
ferential field extensions of Proposition 3.2.

Note that in the Picard-Vessiot case (III) above, given a linear differ-
ential equation over F' in vector form (*) dy = Ay, one is really interested
in a fundamental system of solutions, which amounts to a nonsingular
n X n matrix Z such that 8Z = AZ. So we have replaced the original
equation, where y is an unknown column vector, by the equation (**)
0z = Az where z is an unknown from GL,,. The differential rational
map z — (0z)z7! from GL, to its Lie algebra is called the logarithmic
derivative dingp,, and the equation (**) becomes dingr, (z) = A.

Kolchin ([5]) defines a logarithmic derivative ding for any algebraic
group G over the constants. From the analytic point of view and work-
ing in the differential field K of meromorphic functions on some open
set in C, ding is obtained by applying the derivation 8 = d/dt to the
multivalued logarithm map from G(K) to LG(K) (where LG is the Lie
algebra of G). From the differential algebraic point of view and working
in the universal domain U, ding is obtained by first applying 0 to affine
coordinates of z € G(U) to obtain a point in the tangent space to G at
z, and then taking the corresponding element of L(G).

Kolchin ([5]) proves

Proposition 7.3.3 (i) Suppose Cr is algebraically closed, G is a con-
nected algebraic group over F and b € LG(F). Then there is a solution
a € GU) of ding(—) = b such that K = F(a) is a strongly normal ex-
tension of F (i.e. a differential Galois extension as in Case (II) above).
Moreover K is unique (as a differential field up to isomorphism over F).
(i) Conversely, if K is a strongly normal extension of F' and F is al-
gebraically closed, then there is a connected algebraic group G over Cr,
and b € LG(F) such that K is generated by a solution of ding(—) = b.

We now work towards stating a generalization of Proposition 3.3 to
arbitrary differential Galois extensions.
Let G be an connected algebraic group over the differential field F' (but
not necessarily defined over the field of constants Cr of F'). We need the
notion of an algebraic d-group structure on G, due to Alex Buium [1].
We will explain this notion in the case where G is affine (for the general
case replace coordinate ring by structure sheaf). Let F[G] denote the
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coordinate ring of G. By an algebraic Jd-structure on G we mean an
extension of the derivation 8 on F to a derivation D on F[G] which
respects the group operation. “Respecting the group operation” means
the following. Note that D extends canonically to a derivation on F[G x
G] = F|G] ®F F[G] which we also call D. For f € F[G] let f* be
the function on G x G taking (g,h) to f(gh). Then the condition on
D is that for any f € F[G], D(f*) = (Df)*. In the same way that
a derivation of F[G] which is 0 on F is, or corresponds to, a vector
field on G, a derivation D extending O corresponds to a section s of a
certain “twisted” tangent bundle T5(G). T5(G) has the structure of a
connected algebraic group over F' which is also a torsor for T(G). The
compatibility of D with the group operation means precisely that s is a
homomorphism. In any case we write an algebraic d-group as (G, D) or
(G, s). Such an object really belongs to algebraic geometry or algebraic
group theory. If G is defined over Cg then T5(G) = T(G) and we of
course have the 0-section G — T(G), which we call s¢, giving the trivial
algebraic d-group structure on G.

Before proceeding further it is worth noting the relationship of such
objects to more familiar (to some people) things. For example, one can
show rather easily that if (G, D) is an algebraic D-group, then D induces
a derivation on the maximal ideal of the local ring of G at the identity,
hence induces a connection, which we call Dy on the cotangent space V'
to G at the identity. If G happens to be the universal extension A of an
abelian variety A by a vector group, then Vcoincides with H},z(A) the
first de Rham cohomology group of A, and the so-called Gauss-Manin
connection on the latter turns out to be precisely Dy, where D is the
unique algebraic d-group structure on A. So in this case, the unique
d-group structure on A can be viewed as a “lifting” of the Gauss-Manin
connection.

An algebraic d-group (G, D) gives rise to objects and maps belonging to
differential algebraic geometry: if g € G(U) we can apply the derivation
0 to the coordinates of g and we obtain a point in the fibre of TH(G)
above g which we call 9(g). But s(g) is also in this fibre. Hence the
difference 9(g) — s(g) is in the tangent space to G at g and hence yields
a point in the Lie algebra of G which we call point din; p)(g). So
dlng, py is a differential rational map from G(U) to LG(U), and also a
so-called crossed homomorphism. (When G is over the constants and
s = 89, the map coincides with Kolchin’s ding described earlier). The
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kernel of din g py is denoted by (G, D)? or just G2 if D is understood,
and is a “finite-dimensional differential algebraic group”.

Note that if (G, D) is a connected algebraic d-group over F' and b €
LG(F), then letting Y be the solution space in G(Uf) of the equation
ding,py(—) = b, and taking X = G?, then Y is internal to X. If more-
over GO (F) = G?(F4Sf) then we obtain a differential Galois extension
K of F in the sense of 3.2 by letting g be a solution of the equation in
G(F#/f) and putting K = F(g). Conversely:

Proposition 7.3.4 Let K be a differential Galois extension of F and
assume that F is algebraically closed. Then there is a connected algebraic
d-group (G, D) such that GP(F) = GP(F4S1), and there are b € LG(F)
and g € G(K) such that dln; py(g9) = b and K = F(g).

Finally one may ask what the definable Galois group from 3.1 or 3.2
corresponds to. Bearing in mind the above few lines, let K be a differen-
tial Galois extension of F' generated over F' by a solution of an equation
dinig,py(—) = b with b € LG(F) and with G?(F) = G(F%//). Then
the definable Galois group from 3.1 and 3.2 is, up to F-definable iso-
morphism, of the form S?, where S is some d-subgroup, defined over F,
of the algebraic 0-group (G, D’) where D' = D + rp — Iy, 13 is the right
invariant vector field on G determined by b and I, the left invariant one.
So Auty(K/F) is canonically isomorphic to S?(F%Sf).

Another incarnation of the Galois group has the form H? for H some
O-subgroup of (G, D) defined over F. H? and S? will in general be only
isomorphic over K. In the case where G = GL, and D is trivial, then
H? is the set of constant points of a linear algebraic group over Cr,
and is what is commonly known as the differential Galois group of the
corresponding Picard-Vessiot extension.
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